
Distributed Log Search based on Time Series
Access and Service Relations

Tomoyuki Koyama and Takayuki Kushida

Abstract Distributed tracing helps administrators to analyze root causes of mi-
croservices under system failure. It enables tracking procedures by log messages.
Distributed trace log searches require short response times. Therefore, this study
proposes a log search method with fast response time to search queries. Log mes-
sages are stored on several nodes as blocks grouped by date/time and service-name.
The search method focuses on time-series access patterns and service relations. It
decreases the number of accessed log messages per query on search. Experiment
results show that the proposed method is maximally 0.91 seconds faster than the
parallel method ’all parallel’.

1 Introduction

Microservice architecture consists of several services, which communicate them-
selves on a network. When one microservice responds error to another microservice,
a new error occurs in another microservice [1]. A step of error propagation is called
cascading failure. Since the architecture consists of a single part of the application,
the root cause of errors is identified by intercepting or tracing (e.g., stack trace) in
the monolithic architecture [2]. On the other hand, the stack trace can not apply in
the microservice architecture since the architecture is built on several programming
languages, frameworks and platforms [3]. The monolithic architecture is superior to
the microservice architecture in traceability for root cause analysis.

Tomoyuki Koyama
Graduate School of Computer Science, Tokyo University of Technology, Hachioji, Tokyo, Japan,
e-mail: g21210247f@edu.teu.ac.jp

Takayuki Kushida
Graduate School of Computer Science, Tokyo University of Technology, Hachioji, Tokyo, Japan,
e-mail: kushida@acm.org

1

2 Tomoyuki Koyama and Takayuki Kushida

Distributed tracing is widely used in a microservice architecture for root cause
analysis [4, 5]. Each service in a microservice generates log messages, and when
distributed tracing, each message has an identifier. The identifier is generated on
the service, directly receives the user’s request, and can be passed to other services
during the communication process. When system administrators track user requests
in root cause analysis, they can find log messages that match request identifiers. As
the number of microservices increases, the total number of requests for service-to-
service communication increases. In addition to increasing the number of commu-
nications, the total number of log messages increases. Therefore the response time
is required short with large-scale logs in search.

The scatter-gather pattern is an approach for large-scale data processing. This
pattern enables large-scale data processing by sharing tasks into distributed work-
loads [6]. There are two types of nodes in this pattern, root nodes and leaf nodes.
Root node receives tasks from users and scatters tasks to leaf nodes. Leaf nodes
receive tasks from root node and respond result to it.

Prerequisite

This section describes prerequisites and a use-case scenario. The target log for
this study is the web access log that enables distributed tracing on microservices.
Code. 1 shows the log format for distributed tracing generated from Envoy built-in
Istio. It means that one microservice sends an HTTP request to another microser-
vice.

Code 1 Example log message for distributed tracing.

[2021-10-22T00:27:09.383Z] "GET /paper/0416f705-df88-4d5f-82e8-095d4bd89e37/
download HTTP/1.1" 200 - via_upstream - "-" 0 736954 134 133 "-" "Python
/3.9 aiohttp/3.7.4.post0" "11c0553b-e1cd-9044-b4ce-49576dcbae6c" "paper-
app.paper:4000" "10.42.2.65:8000" inbound|8000|| 127.0.0.6:37351
10.42.2.65:8000 10.42.2.64:44452 outbound_.4000_._.paper-app.paper.svc.
cluster.local default

A use-case of the log is root cause analysis on microservice architecture. System
administrators utilize the distributed tracing log to find the root cause of system fail-
ure. When trouble is reported from a user on a web service, the system administrator
executes the following search queries.

• status code = 400 & service name = front
• request id = 1c0553b-e1cd-9044-b4ce-49576dcbae6

Fig. 1 shows an example of microservices. A rectangle on the figure means a mi-
croservice (e.g., front-admin, front). A cylinder means Datastore (e.g., MongoDB,
Minio). This paper defines a user who accesses web services as an End User and an
administrator as Admin. A microservice connects to multiple microservices in order
to respond to requests from users. For instance, when End User sends a request to
’front’, ’front’ sends several requests to ’author’ service and ’paper’ service. When

Distributed Log Search based on Time Series Access and Service Relations 3

’paper’ service receives a HTTP request from ’front’ microservice, ’paper’ service
generates an ingress log message as shown in Code. 1.

author MongoDB

MongoDB

MinioEnd
User

pdf

Admin
user MongoDBfront-admin

front
paper

Fig. 1 Example of microservices for a paper publishing site.

Issue

The response time depends on the search query that the administrator sent in a log
search on scatter-gather. This is because the search query differs from the pattern of
accessing log messages on leaf nodes [7]. When the root node forwards the search
query to leaf nodes by a search query, each leaf nodes finds log messages in a lo-
cal volume. The placement of log messages on leaf nodes changes the search re-
sponse time. Balanced log placement archives short search response time. When the
log messages corresponding to a search request are unevenly distributed to several
nodes, the search response time becomes slow. This is because the response time in
scatter-gather takes the maximum value of the response time of the leaf node.

Fig. 2 shows an issue of log search with scatter-gather. The figure has System
Administrator, Root Node, and Leaf Nodes(A, B, C, D). The rectangle inside each
Leaf Node is the log message. It has an identifier as an integer number such as
10. System Administrator sends Search Request to Root Node in order to find log
messages which have specified request-id (e.g., ID=10). Root Node sends Search
Requests to Leaf Nodes by mapping table that resolve log into Leaf Node. For in-
stance, Root Node accesses Leaf Node A and B in the figure. Leaf Nodes find log
messages that match the search request on local storage.

The time to find log messages depends on the number of log messages on Leaf
Nodes. As the number of log messages increase, the disk I/O increase on a leaf node.
The pattern of unbalanced disk I/O on Leaf Nodes produces high search latency
since the total search response time is equal to the maximum search response time
of Leaf Nodes. For example, The search targets are three in Leaf Node B, on the
other hand, zero in Leaf Node C. This is called straggler problem in scatter-gather.
The placement of log messages is essential for fast log search. On the other hand,
an actual data access pattern corresponding to search requests does not balance Leaf
Nodes.

4 Tomoyuki Koyama and Takayuki Kushida

An access pattern of log messages is different by conditions such as ID or Pa-
rameters(e.g., service-name) in search query on distributed tracing. Therefore, some
existing methods that utilize simple conditions clustering produce high latency on
log search. This paper proposes low latency log search, which specializes in two
types of query: request-id based filtering, service-name based filtering.

This paper is organized as follows. Section 2 explains existing works on dis-
tributed tracing and Information Retrieval. Section 3 presents the method to speed
up a log search engine to specialize in Distributed tracing. Section 4 displays the
implementation of the proposed method and describes the environment for experi-
ments. Section 5 evaluates the results of the experiments. Section 6 discusses points
of improvement and parameters on the investigation. The last section shows the
contribution and the conclusion of this study.

Leaf Node A
20

Root Node

System
Administrator

Search Request

10
30

Leaf Node B
20
20
20

Leaf Node C
30
30
10

Leaf Node D
30
10
10

Search Response ID=20

Fig. 2 Issue: access pattern and log placement.

2 Related Works

The scheduling approach to minimize job execution time finds a relation between
replication factors and job execution time on Hadoop[8]. The factors in the study
include the following parameters: available disk capacity, network throughput, data
copying time. This approach decreases a job execution time by over 18 - 20 percent
compared with existing methods. Shorting job execution time helps search large
volumes of logs; nevertheless, its approach is not enough to make aware stored
content. Thus, it has a possibility of decreasing job execution time by log access
pattern.

CDRM proposes cost awareness dynamic replication management of storage
clusters on a cloud [9]. The study focuses on relations between availability and the
number of replicas. The study calculates minimum replicas that satisfy availability
requirements from node capacity and blocking probability. The proposed method

Distributed Log Search based on Time Series Access and Service Relations 5

improves data access latency. However, the technique could not figure out depen-
dencies between each data. The study can improve access latency in distributed
tracing since log messages have dependencies with other entries.

The heterogeneous database system produces high throughput database by SQL
and NoSQL [10]. The proposal enables decreasing Disk I/O latency by Elasticsearch
and MySQL. The characteristics of the proposed system (independence between
transactions, single write) make it suitable for use with logs. Although, the study
is not enough to be aware of the data access pattern. The method has an issue with
access latency.

AptStore builds dynamic data management system for decreasing storage costs
and improving Disk I/O throughput on Hadoop [11]. It enables the calculation of
the probability of data accessing counts. The approach helps to match past access
patterns and feature accessing design. However, the practice of data accessing is
little in distributed tracing. The way has search throughput on distributed search.

The technique improves communication performance by data placement on In-
finiBand [12]. The study decreases a memory registration overhead by reducing the
page size of the file system. However, the works are not enough to be aware of data
placement and data access patterns. Therefore, It has problems with search perfor-
mance improvement.

3 Proposed Method

This study proposes the log search method for distributed tracing. The method fast
responds to search queries as follows: request-id based filtering, service-name based
filtering, date/time-based filtering. This study focuses on the relation between log
access patterns and these parameters in search queries. The proposed approach de-
termines the placement of log files in distributed nodes based on service-to-service
relation graph and invocation order.

Fig. 3 shows an overview of the proposed log search method. The figure consists
of two phases as follows: Store Phase, Search Phase. Store Phase denotes proce-
dures from the generated log to the log stored in Leaf Nodes and Search Phase
denotes procedures to find log messages that match a filter condition in query. The
figure has three types of nodes: Microservices, Root Node, and Leaf Nodes. Mi-
croservices provide several users with a web service over the internet. Root Node
processes log messages, scans service relations, and forwards log messages to Leaf
Nodes based on the placement rules. Leaf Nodes store log messages as log blocks
and respond to search requests on log search. The flow of logs generated by the
microservice and stored in Leaf Nodes is described below.

1. Microservices forward log messages to Root Node as log files.
2. Root Node converts log files into blocks.
3. Service Scanner discovers microservices.
4. Service Scanner generates Service Relations from discovered microservices.

6 Tomoyuki Koyama and Takayuki Kushida

Root
NodeMicroservices

Service
Relations

Log Files

Service
Scanner

3

Leaf Nodes

Lo
g

 P
la

nn
er

1
2

Rule
Generator

Placement
Rule

5

Root Node
Blocks

4 6

6 7

Lo
g

 S
ea

rc
he

r

Placement
Rule

System
Administrator

Store Phase Search Phase

ii

iii

i

iv

Fig. 3 The proposal overview.

5. Rule Generator loads blocks and service relations.
6. Rule Generator writes the placement rule.
7. Log Planner forwards blocks to Leaf Nodes based on the placement rule.

The method works the followed flow when the System Administrator executes a
search query with filtering conditions.

i. System Administrator sends a search query to Log Searcher on Root Node.
ii. Log Searcher scatters search requests to Leaf Nodes.

iii. Leaf Nodes finds log blocks and sends a search response to Log Searcher.
iv. Log Searcher gathers search responses and sends the search result to System

Administrator.

3.1 Rule Generator

This section describes generating the log placement rule. The rule aims to decrease
access blocks on log search for reducing search response time since the number of
access blocks is equal to search response time. The Rule Generator gets two inputs
such as Service Relations, Blocks and outputs the Placement Rule.

Service Relations: The Service Relations has a graph structure and represents
relations in microservices. When one microservice α invokes another microservice
β , microservice α has a service relation to microservice β . The relation displays
as α → β . The proposed method utilizes a service-to-service relation within mi-
croservices for blocks placement. The way to get service relation is service mesh.
A service mesh supports a service discovery that enables to find microservices and
their relations [13]. Istio is used for service discovery in this study 1.

1 https://istio.io/

Distributed Log Search based on Time Series Access and Service Relations 7

Blocks: The Rule Generator takes the Blocks as input. The Blocks are made
from Log Files based on date/time and service-name to reduce the number of ac-
cess blocks on search. For example, the service-name that the file name contains
is ”front,” and the date/time are ”2021-10-22T00:27:09.382Z” in Code. 1. A block
length takes a fixed file size based on the date/time range, such as 12 hours. The
steps of making blocks are as follows: 1) clustering log files by service-name; 2)
concatenating log files per service-name and splitting concatenated files as a fixed
size block.

Placement Rule: The Rule Generator outputs the Placement Rule for Leaf
Nodes. The rule manages the pairs of blocks and Leaf Nodes. When the Root Node
finds the leaf nodes that have log blocks matched search conditions, the Root Node
utilizes the Placement Rule. The format for the rule has pairs of key-value struc-
tures. The key takes a block name, and the value takes node-name, service-name,
and date/time. The steps of making the Placement Rule are as follows. The number
of Leaf Nodes is defined as N. Each Leaf Nodes is assigned a serial number from 1
to N. B is the set of blocks as follows: b ∈ B. b is one of the blocks in B and is split
by service-name and date/time.

1. Sort all blocks based on service-name and date/time in a log message.
2. Allocate blocks from the sorted block list to the leaf nodes while the number of

iterators i increases. Select a block from the list. The leaf node for storing blocks
is determined by modulo arithmetic. The serial number i that corresponds to a
block is formulated as mod(i,N).

Fig. 4 shows an example of log placement where N = 4. The figure has three
services as Service A, Service B, and Service C. A block in the figure has service-
name and date/time range. For example, the top left block means that service-name
is ’Service A’, and date/time range is from 1 to 3.

Leaf Node 1 Leaf Node 2 Leaf Node 3 Leaf Node 4

t=[4,6]
Service A

t=[1,3]
Service A

t=[7,9]
Service A

t=[4,6]
Service B

t=[7,9]
Service B

t=[7,9]
Service C

t=[1,3]
Service C

t=[4,6]
Service C

t=[1,3]
Service B

t=[BEGIN,END]
SERVICE_NAME

Fig. 4 Proposed log placement on 4 leaf nodes.

8 Tomoyuki Koyama and Takayuki Kushida

3.2 Log Searcher

This section describes the search method to decrease the number of accessed logs
on log search. Fig. 6 shows the method of proposed log search. The figure displays
log blocks per service on microservices. The color of the block indicates whether
to scan on the log search. The x-axis indicates elapsed time. The services such as
Service A consist of a web service. The dotted lines indicate search target date/time
range (e.g. from November 9, 2021, to December 7, 2021). When a user accesses
Service A by Web Browser, Service A accesses Service B and accesses Service C
to build a response. The following section describes the search procedure.

1. Find log messages in the block of Service A that locates the top of service rela-
tions when the system administrator finds log messages in log blocks parallelly.

2. Find the first message that matches the search condition in the search result of
Service A.

3. Get the date/time from the first log message.
4. Find the log block that matches the first date/time in ’Service B that is the next

service from Service A.
5. Repeat steps until no next service.

time

date/time range specified search conditions

Scanned Blocks in Search Targets

Unscanned Blocks in Search Targets

Unscanned Blocks

Service A

Service B

Service C

Service CService B

Service A
Web Browser

Fig. 5 Proposed log search.

Fig. 6 compares the steps of block access in log search between the parallel
method ’All Parallel Search’ and the proposed method ’Proposed Search’. The pro-
posed method finds only green blocks. The parallel method finds green blocks and
red blocks. A number in blocks mean access order in search. The number of ac-
cess blocks is related to the search response time. The proposed method reduces the
search response time. The characteristic of this study reduces the number of access
blocks on log search based on time-series access and service relations. Reducing
access blocks enables to reduce the search response time since the time is related to
disk I/O.

Distributed Log Search based on Time Series Access and Service Relations 9

Service A

Service B

Service C

All Parallel Search

1 1 1 1 1

2 2 2

2 2 2

time

Proposed Search

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

time

Fig. 6 Flow of accessing blocks.

4 Implementation

Fig. 7 shows a system architecture. The figure has two types of nodes: Root Node
and Leaf Node. The Root Node generates Log Files and creates blocks from log files
and forwards blocks to Leaf Nodes based on Placement Rule. The Placement Rule
is implemented as JSON format as shown Code. 2. This rule takes block name as
key, ’20.author block .log.004’ and takes block metadata as value. Code. 4 shows
the block for ’author’ service from ’begin datetime’ to ’end datetime’ is stored
on ’koyama-log1’. The Leaf Nodes receive blocks from the Root Node and stores
blocks in local storage. The effect of network delay is small since the traffic of node
communication is less than network bandwidth.

Log Forwarder

Root Node Leaf Nodes

Log
Sender

Log Generator

Log Files
Log Receiver

Placement
Rule

Blocks

Log Receiver

Log Receiver

Fig. 7 The system architecture.

Code 2 Example of Placement Rule

{"20.author_block.log.004": {
"begin_datetime": "2023-07-24T16:10:09",
"end_datetime": "2023-12-28T18:42:21",
"nodename": "koyama-log1",
"servicename": "author"

}}

10 Tomoyuki Koyama and Takayuki Kushida

5 Experimental Results

Fig. 8 shows an evaluation environment. The environment works on BareMetal
Hardware with VMware ESXi 7.0 Hypervisor. Root Node runs on a single Vir-
tual Machine. Leaf Nodes works on 13 Virtual Machines. Two types of nodes have
homogeneous hardware resources (CPU: 1[Core], RAM: 1[GB], Storage: 30[GB]
). Log Generator expands log messages from 1,600 to 8,065,000. The log message
reproduces the behavior of the microservices in Fig. 1 (i.e. ’front’, ’paper’ and ’au-
thor’). Fig. 9 shows the evaluation method. The figure has two types of nodes: Root
Node and Leaf Node. User sends a Search Query to the Root Node and receives the
Search Result from the Root Node. The Root Node sends search requests to the Leaf
Nodes (i.e. Leaf Node1, Leaf Node2) and receives search responses. The evaluation
measures the search response time from the Search Requests sent till the Search
Responses received.

Leaf Nodes – 13 NodesRoot Node

Hardware (BareMetal)

Hypervisor – VMware ESXi

Virtual
Machine

Virtual
Machine

Virtual
Machine

Virtual
Machine

…

Fig. 8 Experiment environments.

Root Node
Leaf

Node 1

Elap
sed

 tim
e

Search
Requests

Search

Responses

User

Measuring
time

Search
Query

Search

Result

Leaf
Node 2

Fig. 9 The way to measure the response time.

Comparison of search response time and search target log bytes while block size
increases: Fig. 10 compares the response time in (a) and the maximum search tar-
get log bytes in (b) while the block size changes. The figure compares the parallel
search method (all-parallel) to the proposed search method (proposal). The parallel
search method finds all log blocks that match the date/time range. The proposed
search method finds log blocks that match the date/time range. The search query
has date/time-based filtering and keyword-based filtering as shown in Code. 3. The
length of a log message is around 400 [Bytes]. The response time is the median of
10 measurements, which is measured by the time module in Python.

Code 3 The search query for evaluation: filtering block size and date/time range.

s_bs=8, s_dt_begin="2021-12-13T10:21:50", s_dt_end="2023-02-13T10:21:50"

Fig. 10 (a) compares the search response time while block size increases. The x-
axis is block size (unit: MB), and the y-axis is search response time (unit: seconds).
The block size takes following values: {4, 8, 12, 16, 20, 24, 28, 32, 36, 40}.
The response time of the proposed search method is 0.91[sec] faster than the par-
allel search method maximally, where the block size is 4[MB]. The response time
depends on the block size. As the block size increases from 4 [MB] to 24 [MB],

Distributed Log Search based on Time Series Access and Service Relations 11

(a) Search response time. (b) Search target log bytes.

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40

R
e
s
p
o
n
s
e
 T

im
e
 [
S

e
c
]

Block Size [MB]

all-parallel
proposal

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40

S
e
a
rc

h
 T

a
rg

e
t
L
o
g
 B

y
te

s
 [
M

B
]

Block Size [MB]

all-parallel-max
proposal-max

Fig. 10 Comparison of the block size.

the response time reduces. Response time gets shorter by reducing the total num-
ber of opened files. The existing study shows the same result [14]. As the block size
increases from 24 [MB] to 40 [MB], the response time increases. The increase of re-
sponse time results from increasing access target blocks per leaf node. As the block
size decreases, the number of allocated blocks per leaf node decreases. On the other
hand, increasing the block size increases the difference in the number of stored logs
per leaf node compared to small block size. Thus, the difference of accessed blocks
counts makes the response time increase.

Fig. 10 (b) compares the maximum search target log bytes while block size in-
creases. The x-axis is block size (unit: MB), and the y-axis is the maximum total
search target log bytes in Leaf Nodes (unit: MB). The block size takes followed
values: {4, 8, 12, 16, 20, 24, 28, 32, 36, 40}. As the block size increases, the
maximum search target log bytes increases. The increasing response time is caused
by the maximum search target log bytes increasing between 24[MB] and 40[MB] in
Fig. 10 (a).

(a) Proposed search method. (b) Parallel search method.

0

0.5

1

1.5

2

2.5

3

3 6 9 12 15 18 21 24

R
e

s
p

o
n

s
e

 t
im

e
 [

S
e

c
]

Date/time range in search query [Month]

proposal-04
proposal-08

proposal-16
proposal-32

0

0.5

1

1.5

2

2.5

3

3 6 9 12 15 18 21 24

R
e

s
p

o
n

s
e

 t
im

e
 [

S
e

c
]

Date/time range in search query [Month]

all-parallel-04
all-parallel-08

all-parallel-16
all-parallel-32

Fig. 11 Comparison of the log placement method.

12 Tomoyuki Koyama and Takayuki Kushida

Comparison of search response time while the number of target log bytes in-
creases: Fig. 11 compares the number of search target log bytes between (a) Pro-
posed search method and (b) Parallel search method. The figure aims to recognize
the effectiveness between the number of search target blocks and the search re-
sponse time. The x-axis is the date/time range (unit: Month) which is specified in
search query. It takes followed values: {3,6,9,12,15,18,21,24}. For example, x= 3
means to find log messages within 3 months. The y-axis is response time. The leg-
ends indicate block size (unit: MB) and take followed values: {4,8,16,32}. The
response time is the median of 50 measurements, which is measured by the time
module in Python. Fig. 11 (a) shows that the response time remains constant as the
date/time range increases. The proposed method keeps the number of access blocks
constant on search when the date/time range is extended in the search query. The
search response time decreases as the block size increases from 4[MB] to 32[MB].
A large block size reduces Disk I/O overhead on a Linux file system. In order to de-
crease file system overhead, GFS which is created by Google adopts 64 [MB] as a
block size [15]. Fig. 11 (b) indicates that the response time increases in the parallel
search method with the date/time range increased. The response time depends on the
number of accessing blocks on search. The number of accessing blocks increases on
the parallel method as the search query’s date/time range expands. Fig. 11 (a) and
(b) indicate that the proposed search method faster than the parallel method in search
response time. The reason of differ response time is that the proposed method is less
than the parallel method in the number of accessing blocks on log search.

6 Discussion and Conclusions

The proposed method sets fixed block size. Thus, the number of log messages per
block is homogeneous. While the data size of the block grows, the data size grows
sequentially. The file size which can be read and written simultaneously depends on
Disk I/O performance per node. Thus, block size has to be calculated from Disk I/O
performance. One of the methods is iostat command which gets I/O performance.

Default length of block size is 16[KB] on existing database systems such as
MySQL(InnoDB) and PostgreSQL. This is because page cache size of file system
uses multiple of 4[KB]. For example, considering the case where a 16[KB] block
contains the format as shown in Code. 1. When the length of a log message is
400[KB] as shown Code. 1, a block contains 40 messages (16,000/400 = 40).

As block size increases, the response time is short. On the other hand, increasing
the block size makes the placement problem. As the block size decreases, the num-
ber of log messages allocated on leaf nodes increases due to decreasing free space
in the leaf node’s local disk. Block allocation algorithm requires not only the block
size but also free disk space on leaf nodes.

The issue is the slow response time for distributed tracing on the log search sys-
tem. This study aims to reduce the search response time of two types of queries: fil-
tering status-code, request-id). This study proposes a fast log search method for dis-

Distributed Log Search based on Time Series Access and Service Relations 13

tributed tracing. The method makes the log blocks based on date/time and service-
name in log messages. The log blocks are stored on several distributed nodes and
retrieved on search. Experiment results show that the response time of the proposed
method is maximally 0.91 seconds faster than the method of all parallel. This study
contributes to reducing search response time on log search.

References

1. F. Montesi and J. Weber, “From the decorator pattern to circuit breakers in microservices,”
in Proceedings of the 33rd Annual ACM Symposium on Applied Computing, 2018, pp. 1733–
1735.

2. S. Mallanna and M. Devika, “Distributed request tracing using zipkin and spring boot sleuth,”
International Journal of Computer Applications, vol. 975, p. 8887.

3. C.-Y. Fan and S.-P. Ma, “Migrating monolithic mobile application to microservice architec-
ture: An experiment report,” in 2017 ieee international conference on ai & mobile services
(aims). IEEE, 2017, pp. 109–112.

4. A. Bento, J. Correia, R. Filipe, F. Araujo, and J. Cardoso, “Automated analysis of distributed
tracing: Challenges and research directions,” Journal of Grid Computing, vol. 19, no. 1, pp.
1–15, 2021.

5. M. Santana, A. Sampaio Jr, M. Andrade, and N. S. Rosa, “Transparent tracing of microservice-
based applications,” in Proceedings of the 34th ACM/SIGAPP Symposium on Applied Com-
puting, 2019, pp. 1252–1259.

6. C. Alvarez, Z. He, G. Alonso, and A. Singla, “Specializing the network for scatter-gather
workloads,” in Proceedings of the 11th ACM Symposium on Cloud Computing, 2020, pp.
267–280.

7. A. Dan, S. Y. Philip, and J.-Y. Chung, “Characterization of database access pattern for analytic
prediction of buffer hit probability,” The VLDB Journal, vol. 4, no. 1, pp. 127–154, 1995.

8. H. E. Ciritoglu, L. Batista de Almeida, E. Cunha de Almeida, T. S. Buda, J. Murphy, and
C. Thorpe, “Investigation of replication factor for performance enhancement in the hadoop
distributed file system,” in Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering, 2018, pp. 135–140.

9. Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “Cdrm: A cost-effective dynamic repli-
cation management scheme for cloud storage cluster,” in 2010 IEEE international conference
on cluster computing. IEEE, 2010, pp. 188–196.

10. U. Taware and N. Shaikh, “Heterogeneous database system for faster data querying using
elasticsearch,” in 2018 Fourth International Conference on Computing Communication Con-
trol and Automation (ICCUBEA). IEEE, 2018, pp. 1–4.

11. K. Krish, A. Khasymski, A. R. Butt, S. Tiwari, and M. Bhandarkar, “Aptstore: Dynamic stor-
age management for hadoop,” in 2013 IEEE 5th International Conference on Cloud Comput-
ing Technology and Science, vol. 1. IEEE, 2013, pp. 33–41.

12. R. Rex, F. Mietke, W. Rehm, C. Raisch, and H.-N. Nguyen, “Improving communication per-
formance on infiniband by using efficient data placement strategies,” in 2006 IEEE Interna-
tional Conference on Cluster Computing. IEEE, 2006, pp. 1–7.

13. W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service mesh: Challenges, state of the
art, and future research opportunities,” in 2019 IEEE International Conference on Service-
Oriented System Engineering (SOSE). IEEE, 2019, pp. 122–1225.

14. T. L. S. R. Krishna, T. Ragunathan, and S. K. Battula, “Performance evaluation of read and
write operations in hadoop distributed file system,” in 2014 Sixth International Symposium on
Parallel Architectures, Algorithms and Programming. IEEE, 2014, pp. 110–113.

15. S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in Proceedings of the
nineteenth ACM symposium on Operating systems principles, 2003, pp. 29–43.

