
Log message with JSON item count
for root cause analysis in microservices

Tomoyuki Koyama
Graduate School of Computer Science

Tokyo University of Technology
Tokyo, Japan

g21210247f@edu.teu.ac.jp

Takayuki Kushida
Graduate School of Computer Science

Tokyo University of Technology
Tokyo, Japan

kushida@acm.org

Abstract—System administrator takes time to find application
error in one microservice caused by HTTP response from another
microservice. Although Istio default log message includes the
data length of HTTP response body, it doesn’t indicate the
structure of HTTP response body such as key-value pair counts.
Therefore, system administrator takes time to identify root cause
of error by Istio default log message and needs to have skills in
fault diagnosis. This paper proposes an algorithm that calculates
an indicator for application error identification. The algorithm
counts items such as map or list in JSON format from HTTP
response body as the indicator. The indicator represents the body
structure of HTTP response and is recorded in log messages as
an additional field. The indicator enables system administrator
to identify application error by log messages. The experiment
measures log message length increase by the indicator and
response time increase by the indicator calculation. The average
response time of the proposed log format increases by 7%
compared with Istio default log format. The average log message
length increase in the proposed method is 216 bytes compared
to Istio default log format.

Index Terms—Logging, Message format extension, Root cause
analysis

I. INTRODUCTION

Commercial software for production systems has a function
that generates log messages [1]. Events occurring in the
software are recorded as log messages [2], [3]. Log message is
utilized for software debugging, system monitoring, and fault
localization [4]–[7]. Experienced developers answer that log
messages are the primary source of problem diagnosis accord-
ing to the survey by Microsoft [8]. When system failure occurs
such as database connection failure, system administrator finds
and analyzes log messages for troubleshooting [9]–[11].

Istio1 has a logging feature to track request handling pro-
cesses [12]. Istio is software that implements service mesh and
is utilized by several companies such as Airbnb and eBay2.
Service mesh is a dedicated layer for handling communication
among microservices [13]. Microservice is an architecture
style [14]. Each microservice often has RESTful API as
interface to receive requests from other microservices [15].
Istio proxy is one of the components in Istio. It is deployed
beside each application container [16].

1https://istio.io/
2https://istio.io/latest/about/case-studies/

Fig. 1 shows the use case scenario. “Doktor” is a web
service that is implemented as microservices. Each microser-
vice includes application(app) and Istio proxy. End user
accesses “Doktor” to find and download technical papers.
Front and fulltext service are microservice in Doktor. Front
service provides user interface for end user. Fulltext service
serves keyword-based full-text search as backend for front
service. When Istio proxy receives or sends HTTP requests, it
generates log messages. Log server receives and stores the
log messages. Monitoring server checks whether “Doktor”
replies with HTTP response corresponding to HTTP request as
external monitoring. When the web service replies with HTTP
response including error status code such as “500 Internal
Server Error”, the monitoring server sends a notification to
system administrator. System administrator has to diagnose
root cause of the HTTP response including error status code.
System administrator issues search query to log server in order
to find log messages which are related to the HTTP response.

Fig. 1: Use case scenario

Issue

When the monitoring server sends a notification of a fail-
ure to system administrator in Fig. 1, system administrator
analyzes root cause of the failure by log messages. System
administrator takes time to find root cause of the application

55

[2022-11-27T08:27:21.565Z] "GET /?keyword=IoT
HTTP/1.1" 200 - via_upstream - "-" 0 18772 61 60
"192.168.200.1,10.42.0.1" "Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/107.0.0.0 Safari/537.36"
"03a2bb05-ff33-46ad-90b8-1e43622c0024"
"doktor.tak-cslab.org" "10.42.0.65:8000"
outbound|4000||front-app.front.svc.cluster.local
10.42.0.247:44120 10.42.0.247:8080 10.42.0.1:44255
- -

Code. 1: Example of log message generated from Istio proxy
beside front app

error corresponding to the failure by log messages that have
Istio default log format. The time to recover system failure
depends on the time for root cause analysis. Therefore, it
should be short in order to prevent SLA violations. The
time that system administrator takes on root cause analysis
is caused by Istio log message format. Istio default log format
doesn’t include the attributes that represent HTTP response
body structure. Therefore, system administrator takes time for
root cause analysis.

When end user finds technical reports with specified key-
words, “front app” replies with error HTTP response. The error
is caused by the software bug in “front app” that software
developer unintentionally added. For example, “front app”
replies with normal HTTP response such as status code 200
when the keyword “IoT” is specified on technical papers
search. In contrast, “front app” replies with error HTTP
response such as status code 500 when the keyword “recall”
is specified. Therefore, the error occurs when no papers are
matched with the specified keyword. Whether the error occurs
or not depends on paper list in HTTP response body which is
received from “full-text app”. When the HTTP response body
includes 1 or more papers in paper list, “front app” replies
with normal HTTP response. When the HTTP response body
includes an empty paper list, “front app” replies with error
HTTP response. System administrator has to focus on items
in HTTP response body such as list or map in order to identify
the condition that the error occurs.

Code. 1 shows an example of log message generated from
Istio proxy beside “front app” in Fig. 1. The log message
corresponds to the response R′

1 and is made from Istio default
log message format3. The log message is generated when end
user finds technical papers including keyword “IoT” on the
web service. The log message doesn’t represent data structure
and items in HTTP response body. Although HTTP response
structure such as array item counts is changed, system ad-
ministrator cannot observe the changes by Istio default log
messages.

One of the methods for error identification by log messages
is to record the entire HTTP response body in log messages.
System administrator is able to check HTTP response body by
log message. The disadvantage of the method is that the total
log file size increases as the log message length increases.
Log file size fast grows in big data industry [17]. Log file

3https://istio.io/latest/docs/tasks/observability/logs/access-log/

consumes local storage on log server, so that log message
length increases pressure on the storage capacity.

II. RELATED STUDY

The study defined log message format identification prob-
lem and tried to solve the problem as multi-objective problem
[6]. The number of log messages extracted by the proposed
method was higher than the other two methods. Although
the proposed method is applied to log messages generated
from Istio, the log messages don’t include fields for iden-
tification. Therefore, the proposed method is insufficient for
identification with HTTP response body. The study proposed
log message transformation to reduce log file size [18]. The
study replaced the common message pattern as a message
identifier, so that duplicated message patterns were reduced.
System administrator needs to prepare message pattern rules to
match the common message patterns. The operation editing the
message pattern rule is heavy work for system administrator.
The method of operational profiles for large deployment added
flags on program execution log messages to reduce profile
creation time [19]. This study removed and compressed redun-
dant log messages. Although the flags are added to Istio log
messages, system administrator takes time to identify different
errors by log messages because the flags don’t represent HTTP
response details.

III. PROPOSED METHOD

This study aims to reduce the time to identify the HTTP
requests that are the root cause of system failure. This paper
proposes Response Body Summary Index (RBSI hereafter).
RBSI represents the number of items in HTTP response body
which has JSON format. RBSI enables system administrator
to identify different HTTP response body structures. The
proposed method adds RBSI into log messages. As a result,
the method reduces the time for root cause analysis. RBSI
is calculated by Response Body Summary Algorithm (RBSA
hereafter).

Fig. 2 shows overview of the proposed method. End user
accesses web service to see contents. The web service consists
of two microservices such as microservice 1 and microservice
2. Each microservice has application container and Istio proxy.
For instance, microservice 1 consists of app1 and Istio proxies,
and microservice 2 consists of app2 and Istio proxy. Istio
proxy generates log message when it receives HTTP requests.
The proposed method adds the algorithm RBSA to Istio proxy.
RBSA is an algorithm to obtain the indicator RBSI. RBSI is
an indicator and represents the structure of JSON in HTTP
response body such as key-value pairs or nested items. Istio
proxy with RBSA generates log messages including RBSI
when Istio proxy receives HTTP request. There is a part of
the extended log message in Fig. 2. The extended log message
includes RBSI in addition to fields for the default log message
on Istio proxy. RBSI is appended to the end of the default log
message and saved as extended log message.

Algorithm. 1 shows Response Body Summary Algorithm
as pseudo code. The algorithm takes HTTP response body

56

Fig. 2: Overview of the proposed method

Algorithm. 1 Response Body Summary Algorithm
Input: String responseBody
Output: List rbsi

1: Map total← ∅
2: List rbsi← ∅
3: function CALCULATE RBSI(Map payloads, Int depth)
4: Int counter ← 0
5: for all k, v ← payloads do
6: counter ← counter + 1
7: if TYPE(v) == “map” then
8: CALCULATE RBSI(v, depth+ 1)
9: end if

10: end for
11: if total[depth] == nil then
12: total[depth]← counter
13: else
14: total[depth]← total[depth] + counter
15: end if
16: end function
17: Map parsed body ← PARSE JSON(responseBody)
18: CALCULATE RBSI(parsed body, 1)
19: for all k, v ←SORT BY KEYS ASC(total) do
20: rbsi← rbsi+ v
21: end for

of type string as the input variable “responseBody.” The
algorithm returns RBSI of type list as output variable “rbsi.”
The variable “total” in line 1 has the number of items in
HTTP response body per depth. This variable is type “Map”
and takes key/value pairs. The key is the depth of JSON in
HTTP response body as string and the value is the number of
items in the depth as integer. The variable is initialized with
empty. The variable “rbsi” in line 2 has a “List” including
RBSI values which is type integer. The variable is initialized
with empty. The function “CALCULATE RBSI” counts items
in the argument “payloads” and records item counts for the
variable “total.” The function takes two arguments. The first

Fig. 3: Model of the proposed method

argument “payloads” takes type “Map” and denotes parsed
JSON in HTTP response body. The second argument “depth”
takes type “Int” and denotes depth in nested call. This function
is designed for recursive calls, so that this variable is required
for having current call depth. The variable “counter” in line 4
denotes the number of top level items in “payloads” as type
“Int.” This variable is initialized with zero. The loop from
line 5 to line 10 takes out top level items in “payloads” as
key-value pairs. The code in line 6 adds 1 to “counter” and
subsequently updates “counter” with the obtained value. This
code operates for counting top level items in “payloads.” The
conditional branch from line 7 to line 9 is executed when the
variable “v” is type map. The function “CALCULATE RBSI”
is recursively called with “v” and “depth + 1” as arguments
in order to sum up the total number of items per depth in
HTTP response body. The conditional branch from line 11
to line 15 updates the variable “total.” When “total[depth]”
is empty, “counter” is set as the variable “total[depth].”
When “total[depth]” isn’t empty, “total[depth]” is updated
with the sum of “counter” and “total[depth].” The variable
“responseBody” is parsed by JSON parser “PARSE JSON”
and is substituted in “parsed body” in line 17. The function
“CALCULATE RBSI” is called in line 19. The call takes
“parsed body” and 1 as arguments. The loop from line 19 to
line 21 joins items in the variable “total” by ascending order.

Fig. 3 shows model of the proposed method. “HTTP re-
sponse” represents HTTP response with which a microservice
replies. HTTP response has contents in body such as JSON or
HTML. Example of HTTP response body represents the result
of paper search as JSON format. The key “fulltexts” in body of
HTTP response includes paper list. The list includes key-value
pairs as follows: “paper id” represents a unique identifier;
“page n” represents page number. RBSA is an algorithm that
allows JSON format as input. Microservice supports RESTful
API and has JSON based response format [20]. Therefore, the
algorithm allows JSON format as input. RBSA exports RBSI
which represents input summary. Example of RBSI “1, 2” is
calculated by following procedures.

1) RBSA parses HTTP response body from type string to

57

structured data on programming language such as Map
or List.

2) RBSA reads the structured data, and subsequently counts
the number of items in first depth. For example, first
depth in Fig. 3 has 1 item “”fulltexts”:”, so that the
number of items in first depth is 1.

3) Second depth of the structured data is counted by RBSA
after first depth counts. For example, the second depth in
the figure includes 2 items such as “{”paper id”: ”xxx”,
”page n”: 1, . . . }” and “{”paper id”: ”yyy”, ”page n”:
3, . . . }.”

4) Finally, the values of item count per depth are combined
into comma-separated values which is called RBSI.

RBSA calculates Response Body Summary Indicator (RBSI).
The indicator represents the number of items in input data per
depth. System administrator is able to identify different HTTP
response body by recording the indicator into log message.
RBSI consists of a list of integer values. Each value in the list
is separated by commas and empty spaces.

One advantage of RBSI is that log messages with RBSI are
shorter message length than logging the entire HTTP response
body. Code. 2 shows an example of HTTP response body on
fulltext search app. The fulltext search app provides papers
search over RESTful API. When the fulltext search app re-
ceives HTTP requests including search keywords, the app finds
papers including the search keywords and subsequently replies
with HTTP response. The HTTP response body includes paper
list that is pairs of paper titles and page numbers. The HTTP
response includes a single paper including search keywords
on two pages such as 3 and 5. The format of the HTTP
response body is JSON. The length of the HTTP response
body is 201, so that additional message length of it is 201
bytes. When the HTTP response body is recorded in log
message, log message length increases 201 bytes. In contrast,
RBSI for the HTTP response body is “[1, 2].” The length of
RBSI is 6, so that additional message length is 6 bytes. When
the HTTP response body is recorded into message, the log
message length increases 6 bytes. Although the structure of the
HTTP response body is complex such as deep nested JSON,
RBSI only adds a small amount to log message. Log message
length depends on storage capacity. When single log message
length increases, additional storage capacity is required for
local storage on log server [17]. Although the additional
storage capacity is small per log message, the total consumed
storage capacity increases with increasing the number of log
messages. Therefore, reducing log message length is advantage
for storage capacity.

Another advantage of RBSI is to support a variety of JSON
structures without configuration file edits. RBSA counts items
in JSON per depth and obtains RBSI. RBSA doesn’t depend
on the JSON schema in HTTP response body. Although
system administrator doesn’t know JSON schema in HTTP
response body, RBSA enables RBSI calculation and records
it in log message. Several traditional software requires system
administrator to edit configuration files for different applica-
tion support. For example, one web application replies with

{
"fulltexts": [
{
"paper_id":

"4e85846f-ad34-4883-a9cd-fac273351d62",
"page_n": 3

},
{
"paper_id":

"4e85846f-ad34-4883-a9cd-fac273351d62",
"page_n": 5

}
]

}

Code. 2: Example of HTTP response body on fulltext search
app

Fig. 4: Experimental environment

HTTP response that includes JSON “{”age”: 20}” on body,
and another web application replies with HTTP response that
includes JSON “{”address”: [”Tokyo”, ”Japan”]}.” When sys-
tem administrator uses traditional software to get a summary
of HTTP response body, system administrator needs to edit
two different configuration files. While traditional software
requires system administrator to edit configuration files, RBSA
is not necessary for configuration edits. System administrator
saves time because no configuration edits are required. When
RBSA bundles with Istio, the advantage is more effective. Istio
doesn’t require application source code fixes and configuration
[12].

Modern commercial software for production systems is
required for continuous update to meet business requirements
because of significant business changes [21]. Therefore, the
structure of HTTP response body such as JSON schema
is dynamically changed because of software updates. RBSI
doesn’t depend on JSON schema and doesn’t require system
administrator to edit configuration files.

IV. EXPERIMENTS

Fig. 4 shows the experimental environment. Web service

58

Fig. 5: The number of accesses within 21 days

“Doktor” is deployed to a single virtual machine. The web
service provides public access for technical reports over the
internet and has Istio gateway and 6 microservices (front,
stats, fulltext, paper, author, and thumbnail). The Istio gateway
acts as a gateway proxy and provides public access for end
user over the internet. When Istio gateway receives an access,
it forwards the access to “front” service. Each microservice
includes an application and Istio proxy+. Istio proxy+ is an
extended implementation of Istio proxy and generates log
messages with RBSI. The extension function in Istio proxy+ is
implemented by Envoy Filter written in Lua4. Envoy Filter is
a mechanism that provides a custom function on Istio proxy. It
is used for monitoring and traffic shaping [22]. Microservices
like “stats” that require a persistent data store use persistent
volumes. “Loader” works as an HTTP client to simulate end
user access. Loader imports “production log files” collected
from Doktor as datasets and sends HTTP requests based on
the log files to Istio gateway. The dataset includes 17,845 log
messages generated within 21 days from Istio proxy in front
of “front” service and in back of “front” service. The log
messages are collected from May 5, 2022 to May 25, 2022.
Fig. 5 shows the number of accesses within 21 days. The x-
axis is the date, and y-axis is the number of log messages.
Each point in the figure equals the number of received HTTP
requests in “front” service per day. When Istio proxy+ receives
HTTP request, it calculates RBSI from HTTP response body
corresponding to the HTTP request and subsequently generates
“Istio proxy log files” including RBSI. The method to collect
“Istio proxy log files” from Istio proxy+ is to use the “kubectl
logs . . . ” command. The collected log files are stored on
the machine’s local storage. Table. I shows software list for
the experimental environment. K3s5 is utilized for Kubernetes
engine, and Istio is utilized for Service mesh. Longhorn6

provides storage on Kubernetes.
The experiment measures two metrics, which are log mes-

4https://www.lua.org/
5https://k3s.io/
6https://longhorn.io/

TABLE I: Software list for experimental environment

Software Version
Kubernetes engine K3s v1.25.5
Service mesh Istio v1.16.1
Storage Longhorn v1.4.0

sage length and response time. Log message length represents
byte counts per log entry. It is calculated from “Istio proxy
log files”. Response time represents the consumed time from
HTTP request sent to HTTP response received. It is calculated
from “load log files.” Shell commands such as curl are utilized
for measuring these metrics.

V. EXPERIMENTAL RESULTS

Fig. 6 shows comparison of response time overhead by log
message format extension. The x-axis is HTTP status code
in HTTP response, and the y-axis is response time (unit:
millisecond) from HTTP client. The legend is log format
type. “default logging” represents Istio default log format.
“proposed logging” represents the proposed log format with
RBSI. The proposed log format adds RBSI to Istio’s default
log format. “response body full logging” represents Istio
default log format with the entire text of HTTP response
body. Response time represents the consumed time from HTTP
request sent to HTTP response received. When HTTP status
code is 200, “proposed logging” is 4 milliseconds shorter than
“response body full logging” and is 7 milliseconds longer
than “default logging.” This result indicates that log message
extension makes response time slow when HTTP requests are
correctly processed. When HTTP status code is 307, “proposed
logging” is 7 milliseconds longer than “default logging.” The
difference in response time between “proposed logging” and
“response body full logging” is 1 milliseconds. When HTTP
status code is 400 or 404 or 405, there is no difference among
“default logging”, “proposed logging”, and “response body
full logging” in response time. This result indicates that errors
caused by HTTP requests don’t affect response time. When
HTTP status code is 500, “proposed logging” is 6 milliseconds
longer than “default logging.” The difference in response time
between “proposed logging” and “response body full logging”
is 2 milliseconds. The average response time of “proposed
logging” increases by 7% compared with “default logging.”
The average response time of the format increases by 10%
compared with “default logging.” The result indicates that
response time slightly increases by the proposed method.

Fig. 7 shows comparison of log message length among 2
log formats. The x-axis is log message length (unit: byte), and
y-axis is counts. The legend is log format type. “default log-
ging” represents Istio default log format. “proposed logging”
represents the proposed log format with RBSI. The result for
“default logging” indicates that log message length of default
logging is shorter than 340 bytes. The most frequent log mes-
sage length in default logging is from 300 bytes to 319 bytes.
This result is compared with other results in the following. The
result for “proposed logging” indicates that the most frequent
log message length is from 340 bytes to 359 bytes. This result

59

Fig. 6: Comparison of response time overhead by log message
format extension

Fig. 7: Comparison of log message length among 3 log formats

suggests that the proposed log format slightly increases log
message length. The average log message length increase in
“proposed logging” is approximately 216 bytes compared to
“default logging.”

VI. DISCUSSION

The proposed method counts the number of items in JSON
in order to obtain the feature of JSON in HTTP response
body such as key-value pairs or nested items. The applicable
scope of the indicator RBSI is described below. For example,
there is a microservice for book search that returns a list
of books that match a search keyword. The microservice
provides keyword-based search in ascending or descending
order such as publication year. Database server is connected to
the microservice and stores book data such as publication year
and title. The microservice for book search receives HTTP
requests including keywords. When the microservice is faced
with error caused by the database failure and replies with an
empty book list on the situation expecting 3 books list, system
administrator is able to observe the empty HTTP response
body by log messages with RBSI. RBSI provides observability
to differences in the number of HTTP response items. On the
other hand, RBSI cannot represent that a problem of items
order in JSON is not correct. On the other hand, RBSI cannot
represent that a problem of item order in JSON is not correct.

When the microservice for book search receives HTTP request
and subsequently replies with an out-of-ordered list of books
because of application implementation bugs, RBSI is the same
value between out-of-ordered list and correctly ordered list.
While RBSI enables representing the difference in the number
of items in JSON, RBSI is insufficient to represent order
differences in list items.

VII. CONCLUSION

The goal of this study is to reduce the time for system ad-
ministrator to identify HTTP requests that are the root cause of
system failure. When application error occurs on microservice,
log message is utilized for root cause analysis. The default
log messages generated from Istio don’t include the attribute
for HTTP response identification, so that system administrator
takes time on identifying the difference between error HTTP
response and normal HTTP response. This paper proposes
the indicator RBSI that represents the number of items in
HTTP response body which has JSON format. The indicator is
added to log message. System administrator can identify the
difference between error HTTP response and normal HTTP
response on microservice by log messages including RBSI.
The experiment measures two metrics, which are log message
length and response time. The average response time of the
proposed log format increases by 7% compared with the
default log format.

ACKNOWLEDGEMENT

This work was supported by JSPS KAKENHI Grant Number
JP20K11776.

REFERENCES

[1] C. Zhi, J. Yin, S. Deng, M. Ye, M. Fu, and T. Xie, “An exploratory study
of logging configuration practice in java,” in 2019 IEEE international
conference on software maintenance and evolution (ICSME). IEEE,
2019, pp. 459–469.

[2] K. A. Kent and M. Souppaya, “Guide to computer security log manage-
ment:.” 2006.

[3] A. Makanju, S. Brooks, A. N. Zincir-Heywood, and E. E. Milios,
“Logview: Visualizing event log clusters,” in 2008 Sixth Annual Con-
ference on Privacy, Security and Trust. IEEE, 2008, pp. 99–108.

[4] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and
C. He, “Latent error prediction and fault localization for microservice
applications by learning from system trace logs,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 683–694.

[5] S. Alspaugh, A. Ganapathi, M. A. Hearst, and R. Katz, “Better logging
to improve interactive data analysis tools,” in Proceedings of the ACM
SIGKDD Workshop on Interactive Data Exploration and Analytics
(IDEA ’14), 2014, pp. 19–25.

[6] S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas,
“A search-based approach for accurate identification of log message
formats,” in 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC). IEEE, 2018, pp. 167–16 710.

[7] S. Khan, A. Gani, A. W. A. Wahab, M. A. Bagiwa, M. Shiraz, S. U.
Khan, R. Buyya, and A. Y. Zomaya, “Cloud log forensics: Foundations,
state of the art, and future directions,” ACM Computing Surveys (CSUR),
vol. 49, no. 1, pp. 1–42, 2016.

[8] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices in
industry,” in Companion Proceedings of the 36th International Confer-
ence on Software Engineering, 2014, pp. 24–33.

60

[9] S. Alspaugh, B. Chen, J. Lin, A. Ganapathi, M. Hearst, and R. Katz,
“Analyzing log analysis: An empirical study of user log mining,” in 28th
Large Installation System Administration Conference (LISA14), 2014,
pp. 62–77.

[10] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in 37th annual IEEE/IFIP international conference on
dependable systems and networks (DSN’07). IEEE, 2007, pp. 575–
584.

[11] F. Skopik, M. Landauer, and M. Wurzenberger, “Online log data analysis
with efficient machine learning: A review,” IEEE Security & Privacy,
vol. 20, no. 03, pp. 80–90, 2022.

[12] A. Koschel, M. Bertram, R. Bischof, K. Schulze, M. Schaaf, and
I. Astrova, “A look at service meshes,” in 2021 12th International
Conference on Information, Intelligence, Systems & Applications (IISA).
IEEE, 2021, pp. 1–8.

[13] D. Cha and Y. Kim, “Service mesh based distributed tracing system,”
in 2021 International Conference on Information and Communication
Technology Convergence (ICTC). IEEE, 2021, pp. 1464–1466.

[14] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in
microservice architecture,” in 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications (SOCA). IEEE, 2016,
pp. 44–51.

[15] N. Kratzke, “About microservices, containers and their underestimated
impact on network performance,” in Proceedings of CLOUD COMPUT-
ING 2015 (6th. International Conference on Cloud Computing, GRIDS
and Virtualization), 2015, pp. 165–169.

[16] O. Sheikh, S. Dikaleh, D. Mistry, D. Pape, and C. Felix, “Modernize
digital applications with microservices management using the istio ser-
vice mesh,” in Proceedings of the 28th Annual International Conference
on Computer Science and Software Engineering, 2018, pp. 359–360.

[17] J. Liu, J. Zhu, S. He, P. He, Z. Zheng, and M. R. Lyu, “Logzip: extract-
ing hidden structures via iterative clustering for log compression,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 863–873.

[18] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Storage and re-
trieval of system log events using a structured schema based on message
type transformation,” in Proceedings of the 2011 ACM Symposium on
Applied Computing, 2011, pp. 528–533.

[19] A. E. Hassan, D. J. Martin, P. Flora, P. Mansfield, and D. Dietz,
“An industrial case study of customizing operational profiles using log
compression,” in Proceedings of the 30th international conference on
Software engineering, 2008, pp. 713–723.

[20] N. Kratzke, “About microservices, containers and their underestimated
impact on network performance,” arXiv preprint arXiv:1710.04049,
2017.

[21] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey
of devops concepts and challenges,” ACM Computing Surveys (CSUR),
vol. 52, no. 6, pp. 1–35, 2019.

[22] H. Lee, S. Noghabi, B. Noble, M. Furlong, and L. P. Cox, “Bumblebee:
Application-aware adaptation for edge-cloud orchestration,” in 2022
IEEE/ACM 7th Symposium on Edge Computing (SEC). IEEE, 2022,
pp. 122–135.

61

