
Kubernetesのリソースイベントと依存グラフとトレースに
よる障害の原因調査にかかる時間の短縮

小山 智之1,a) 串田 高幸1,b) 生野 壮一郎1,c)

概要：Webアプリケーションの障害の原因調査のプロセスでは，システム管理者はデータソース (トレー
ス，ログ，メトリクス)を解析する．ある障害においてアプリケーションでのエラーの原因がミドルウェ
アにある場合，その原因の調査には複数のデータソースを解析する必要がある．こうした作業はシステム
管理者が手動で行うため，原因調査に時間がかかっている．システム管理者は障害の原因特定に時間がか
かっており，障害の原因調査の効率化が必要である．本稿ではミドルウェアから出力されるイベントと依
存グラフ，トレースを使用した障害の原因調査の手法を提案する．提案手法ではアプリケーションから出
力されたトレースに関連する依存グラフを作成する．その後，依存グラフをもとにリソースごとのイベン
トの時系列の順序を求め，障害原因の候補をリストアップする．インターネット上に公開したマイクロ
サービスアーキテクチャで設計されたWebアプリケーションを対象に障害を再現し，提案手法の障害原因
の候補に実際の原因が含まれるかを評価する．

1. はじめに
背景
クラウド・分散システム研究室（Cloud and Distributed

Systems Laboratory, CDSL）ではWeb サービスの Dok-

tor*1を運用している．Doktor では CDSL で作成された
PDF形式のテクニカルレポートの検索やダウンロードが
できる．Doktorはマイクロサービスアーキテクチャに基
づいて構築されている．マイクロサービスアーキテクチャ
は Googleや Amazonで使用されている分散型のアーキテ
クチャスタイルの 1つである [1]．マイクロサービスアー
キテクチャは，システム全体を複数の独立したサブシステ
ムに分割することで，ソフトウェアの変更しやすさを向
上している [2]．Doktorは Kubernetesクラスタ上に構築
されている．永続ストレージには分散ストレージの Rook

Ceph*2が使用されている [3]．
Doktorで 2025年 6月 21日に Rook Cephの障害が発生

した．図 1に Doktorで発生した障害の概要を示す．Ku-

bernetesノードには authorマイクロサービス (author MS)

が動作している．author MSは Doktorを構成するマイク

1 東京工科大学大学院 バイオ・情報メディア研究科 コンピュータ
サイエンス専攻

a) d212400159@edu.teu.ac.jp
b) kushida@acm.org
c) ikuno@stf.teu.ac.jp
*1 https://doktor.tak-cslab.org
*2 https://rook.io/

ユーザ

Kubernetesノード

OSD Pod

Metrics

データベース

Logs

Traces

Logs

PV
Mongo

Pod

App
Pod

Rook Ceph

author MS

エラー

Kubernetes
engine Logs

図 1 Doktor で発生した障害の概要

ロサービスの 1つである．author MSにはアプリケーショ
ンのコンテナ (App Pod)，Mongo DBのコンテナ (Mongo

Pod), Mongo Pod 用の永続ディスク (PV) が存在する．
Rook Cephには PVのための OSD Podが存在する．
システム管理者は，Doktorでの障害に関するアラートを

受信すると，障害の原因を調査するために Kubernetesク
ラスタのメトリクスやログ，トレースを調査する．システ
ム管理者が Rook Cephを障害の原因として特定するまで
のプロセスを以下に示す．
(1) 障害の発生時刻，影響しているマイクロサービスやコ

ンテナをメトリクスやアラートから特定した．
(2) 分散トレーシングを使用して影響しているマイクロ

Tomoyuki KOYAMA
ここに掲載した著作物の利用に関する注意 本著作物の著作権は情報処理学会に帰属します。本著作物は著作権者である情報処理学会の許可のもとに掲載するものです。ご利用に当たっては「著作権法」ならびに「情報処理学会倫理綱領」に従うことをお願いいたします。

プログラム 1 Rook Ceph の OSD Pod のエラーの状態
1 $ kubectl get pod -A -o wide | grep osd

2 rook-ceph rook-ceph-osd-0-5d7d4b4648-d8tbr 2/2

Running ...

3 rook-ceph rook-ceph-osd-1-867ffb7b64-279pp 2/2

Running ...

4 rook-ceph rook-ceph-osd-2-5dbc5f798c-flwh4 2/2

Running ...

5 rook-ceph rook-ceph-osd-3-6c5c8bf688-n4d5z 0/2

Init:CrashLoopBackOff ...

サービスやコンテナに関連するリクエストを調査した
ものの原因が特定できなかった．

(3) Kubernetesクラスタの Podの起動状態や Podや PV

のログやイベントを確認した．ノードのハードウェア
リソースの使用率をメトリクスで確認した．

(4) author MS の Podが CrashLoopBackOff 状態である
ことを確認した．

(5) クラスタ全体で Runningでない Podを調査した．
(6) Rook CephのOSD Podが Init:CrashLoopBackOff状

態であることを確認した．
(7) Rook CephのOSD Podに含まれるコンテナのログを

調査した．
上記の調査から障害の原因はRook CephのOSD Podでの
エラーであった．プログラム 1に Rook CephのOSD Pod

のエラーの状態を示す．コマンドkubectl get pod -A -o

wideによりOSD Podの状態を取得できる．OSD（Object

Storage Daemon）はストレージサーバを稼働させるプロセ
スである*3．Kubernetesクラスタには 4つのOSD Podが
存在していた．このうち 1つの OSD Podの “rook-ceph-

osd-3-6c5c8bf688-n4d5z”が CrashLoopBackOffであった．
その結果，author MS の Mongo Pod が永続ボリューム
(PV)のマウントに失敗した．その結果，Doktorの author

MSでエラーが発生した．
プログラム 2にエラーに関連する OSD Podのログを示

す．ログの 1行目はログを取得するために実行した kubectl

logsコマンドである．2行目はログメッセージである．この
ログメッセージは RocksDBに関して SST（Sorted String

Table）ファイルがWALより先に進んでおり不整合が起き
ていることを表す．RocksDB(rocksdb)は BlueStoreのメ
タデータ保存に利用されるデータベースである．3行目の
ログメッセージは BlueStore(bluestore) で RocksDBを開
く際にエラーが発生したことを表す．BlueStore は Rook

Cephのコンポーネントの 1つでストレージのバックエン
ドである．
一連の障害の原因調査のプロセスでは，テレメトリ (ト

レースやログ，メトリクス)を組み合わせて使用していた．
システム管理者がテレメトリを確認するには，それぞれ別
*3 https://docs.ceph.com/en/reef/start/beginners-guide/

プログラム 2 エラーに関連する OSD Pod のログ
1 $ kubectl logs rook-ceph-osd-3-6c5c8bf688-

n4d5z -n rook-ceph -c expand-bluefs

2 2025-06-21T09:40:34.447+0000 7fdddf249980 -1

rocksdb: Corruption: SST file is ahead of WALs

in CF default

3 2025-06-21T09:40:34.447+0000 7fdddf249980 -1

bluestore(/var/lib/ceph/osd/ceph-3) _open_db

erroring opening db:

の方法が必要である．例えば，Kubernetesクラスタのリ
ソースの状態を確認するには，kubectl describeコマンド
や kubectl getコマンドを実行する．また，アプリケーショ
ンのログを確認するには，ログサーバにWeb UIから検索
クエリを発行する．こうした複数のテレメトリから手動で
障害の原因に関連する情報を探す作業は，時間のかかる作
業であり間違いを起こしやすい [4], [5], [6]．22件のシステ
ム障害に対する調査の結果は，大半の障害の調査でシステ
ム管理者がログの閲覧やトレースの閲覧に 1時間以上かか
ることを示している [7]．
トラフィックの増加やシステムを構成するソフトウェア

コンポーネント数の増加に伴い，テレメトリの件数は増加
する．チャットアプリのWeChatのシステムでは，1日あ
たり 16-20ペタバイトのログが出力される [8]．動画スト
リーミングサービスのNetflixのシステムでは，200万に及
ぶメトリクスが存在する [9]．こうした多くのテレメトリ
から必要な情報同士を手動で対応付けて原因を調査する作
業は，システム管理者にとって時間のかかる作業である．
システムでの障害が複雑になるほど，障害にはアプリ

ケーションに加えてミドルウェアが関連する [10], [11]．
Microsoft社での調査結果は，ミドルウェアやインフラス
トラクチャに関連する障害が全体の 26.3%であることを示
している [12]．テレメトリはアプリケーションだけでなく
サーバやコンテナに関連するミドルウェアからも出力さ
れる [13]．システム管理者は障害の原因調査でアプリケー
ションやミドルウェアのテレメトリのそれぞれの調査を行
う．また，システムの運用期間が長くなるにつれ，単純な
障害はテストや段階的なロールアウトにより発生しなくな
り，複雑な障害が残り続ける [14]．システムでの障害が複
雑になるほどアプリケーションとミドルウェアの両方に関
わる障害の発生は，システム管理者の原因調査の難易度を
高めている．

課題
Rook Cephのエラーによる障害では，システム管理者

はエラーの原因を特定するために，ミドルウェアのログや
トレースを手動で確認する．マイクロサービスアーキテク
チャに代表される分散型のアーキテクチャでは，モノリシッ
クアーキテクチャに比べてソフトウェアコンポーネントの

数が多く，調査対象の箇所が多くなる．そのため，手動で
の調査には専門的な知識が必要であり，運用経験の浅いシ
ステム管理者には難易度の高い作業である．そのため，障
害の原因調査で経験の浅いシステム管理者は試行錯誤を繰
り返す必要があり，時間のかかる作業になっている．障害
の原因調査にかかる時間はMTTR(Mean Time to Repair)

に含まれており，短時間での原因調査が必要である．
アプリケーションのテレメトリの収集と分析を行う研究

が存在するが，ミドルウェア上のリソースの依存関係や内
部イベントを含めた複数のデータソースを使用した障害の
原因調査の手法が十分に研究されていない．そのため，シ
ステム管理者はアプリケーションで発生したエラーの原因
調査のために複数のテレメトリのデータソースを手動で確
認して原因調査を行う必要がある．

各章の概要
2章では複数のデータソースを使用した障害の原因調査

とミドルウェアのテレメトリの収集に関する関連研究を紹
介する．3章では提案手法を紹介する．4章では提案手法
の評価について述べる．5章では提案に関する議論を行う．
6章では本稿のまとめを行う．

2. 関連研究
単一のデータソースを使用した障害の原因調査
障害の原因調査はシステム管理者にとって時間のかかる

作業であるため，自動化の研究がされてきた．障害の原因
調査では，単一のデータソースを使用した手法や，複数の
データソースを使用した手法，グラフを使用した手法が提
案されてきた．単一のデータソースを使用した手法として
メトリクスを使用した手法がある [6], [15], [16], [17]．単一
のデータソースにトレースを使用した手法が提案されてい
る [18], [19]．また，単一のデータソースにログを使用した
手法がある [20], [21]．これらの単一のデータソースを使用
した手法は，データソースにしたテレメトリ以外に障害の
兆候が含まれる場合に問題を特定できず，障害の原因特定
の精度に課題がある．

複数のデータソースを使用した障害の原因調査
複数のデータソースを使用した障害の原因調査の手法が

提案されている [4], [22], [23], [24]．これらの手法では障害
の原因調査に複数のデータソースのテレメトリを使用して
いる．DeepTraLogでは複数のデータソースのテレメトリ
を使用した深層学習による異常検知の手法が提案されてい
る [22]．ログやトレースを使いアプリケーションの依存関
係を収集し，依存関係のグラフを構築した．この手法では
ミドルウェアに関連するリソースのトレースやログを使用
していない．この研究では異常検知に着目しており，障害
の原因調査に対する手法ではない．そのため，ミドルウェ

アが原因で発生した障害の原因調査には適さない．Eadro

では教師ありの機械学習を使い複数のデータソースのテレ
メトリを使った原因調査を提案している [23]．教師なしの
機械学習に比べて Eadroは高い精度を示した．Eadroの使
用には教師データへのラベル付与が必要であり，これはシ
ステム管理者にとって負担の大きい作業である．こうした
作業を行うことは実際の運用では現実的ではない．Nezha

ではトレースとログを統合し，リクエスト単位で詳細な一
連の処理プロセスの追跡を可能にした [4]．この手法では
ミドルウェアのログとアプリケーションのトレースを対応
付ける方法が確立されておらず，ミドルウェア原因で発生
した障害の原因調査には適さない．過去に発生した障害か
ら単純なイベントの因果グラフを求め重みを計算すること
で障害の原因調査を行っている [24]．この研究では過去の
障害をデータセットに使用している．過去におきた障害に
は再発防止が行われており再発する可能性が低いため適用
できるケースが限定的である．

3. 提案手法
本稿ではミドルウェアから出力されるイベントと依存グ

ラフ，トレースを使用した障害の原因調査の手法 (Event

RCA)を提案する．Event RCAはシステム管理者が障害
の発生した際に，障害原因の候補をリストアップする．シ
ステム管理者はミドルウェアで発生したエラーに伴いアプ
リケーションのエラーが発生した場合に，Event RCAを
使うことでエラーの原因箇所のリソース (例:コンテナ)を
探す作業が不要になる．障害の原因調査にかかる時間や正
確さは，システム管理者の技量や運用の経験に依存しやす
い．Event RCAによる自動化は，こうしたシステム管理
者の技量や運用の経験が十分でないシステム管理者にも，
熟練したシステム管理者に近い正確さで障害の原因特定を
可能にする．これにより手動での障害の原因調査を削減で
き，障害の原因特定にかかる時間の短縮が実現される．
図 2 に提案手法の概要を示す．図では Kubernetes*4ク

ラスタ上で動作するマイクロサービスアプリケーション
を対象に，障害の原因調査を行う．マイクロサービスは障
害の原因調査を行う対象のアプリケーションである．マイ
クロサービスをまたぐ一連のリクエスト処理を追跡する
ために，トレースが収集されている．Kubernetesクラス
タにはマイクロサービスが配置されている．提案手法では
KubernetesクラスタからKubernetesのリソース同士の依
存グラフを収集する．依存グラフは動作中のリソースの一
覧をAPIで取得し，リソース名をもとに作成される．例え
ば，コンテナをあらわすリソースである Podは，別の Pod

からアクセスするためのリソースである Serviceに依存す
る．また，Pod は永続ディスクの要求をあらわすリソー

*4 https://kubernetes.io/

スの PVC（Persistent Volume Claim）に依存する．また，
PVCは永続ディスクをあらわすリソースのPV（Persistent

Volume）に依存する．こうしたリソース同士の依存関係を
もとに依存グラフを作成する．
図 2 のイベントはリソースのライフサイクルに関連す

るイベントを表す．Kubernetesではリソースの作成や更
新，削除が発生すると，イベントが作成される．プログラ
ム 3に Kubernetesのイベントの例を示す．イベントには
Type, Reason, Age, From, Messageの属性がある．Type

にはイベントの状態が含まれる．Reasonにはイベントの種
類が含まれる．Ageにはイベントが発生したタイムスタン
プが含まれる．Fromにはイベントが発生したリソースを
表す．Messageにはイベントの詳細が含まれる．例えば，
4行目のイベントでは Pod(default/ubuntu)がKubernetes

ノードの clematis-worker2へのスケジューリングに 69秒
前に成功したことをあらわす．
Event RCAは提案手法である．Event RCAではトレー

ス，依存グラフ，イベントを入力として受け取り，障害の
原因調査を行い，障害の原因箇所をリストで出力する．出
力には確率をあらわすスコアと対象リソースのペアがリス
トとして含まれる．例えば，スコアが 0.9で対象リソース
が Pod Aの場合には，Pod Aが障害の原因である確率が
90%である．スコアは 0から 1の範囲の小数として出力さ
れる．出力はスコアの降順でソートされる．
図 2の一連の障害の原因調査の過程を述べる．一連の過

程は，障害が検知された時点で開始される．(1)では次の
データを収集する．
• マイクロサービスからトレースを収集する．トレース
の収集は既存のOpenTelemetry SDK*5や Zipkinライ
ブラリ*6に代表されるライブラリを使用する．

• Kubernetesクラスタから依存グラフを収集する．依存
グラフの収集には Kubernetes APIを使用し，リソー
ス名をもとに依存グラフを収集する．エラーを含むト
レースに対応する Podを起点に依存するリソースを収
集する．

• Kubernetes クラスタからイベントを収集する．イベ
ントの収集には Kubernetes APIを使用する．収集対
象のイベントは，依存グラフに含まれるリソースに関
連するイベントである．

(2)ではトレース，依存グラフ，イベントを Event RCAに
入力し，障害の原因調査を行う．(3)で Event RCAは障害
の原因調査の結果を出力する．

Event RCA

アルゴリズム 1 に Event RCA の内部処理を示
す．入力にはトレースの一覧 (traces)，依存グラ
*5 https://opentelemetry.io/docs/languages/
*6 https://zipkin.io/pages/tracers instrumentation

Event
RCA

依存グラフ

トレース

イベント

e1 e2e3

Kubernetes
クラスタ

マイクロ

サービス

Service

PVC

Pod

PV

(1)

(2)

(3)

(4)
スコアスコアスコア

図 2 提案手法の概要

プログラム 3 Kubernetes のイベントの例
1 Events:

2 Type Reason Age From Message

3 ---- ------ ---- ---- -------

4 Normal Scheduled 69s default-scheduler

Successfully assigned default/ubuntu to

clematis-worker2

5 Normal Pulled 69s kubelet Container image "

ubuntu:24.04" already present on machine

6 Normal Created 69s kubelet Created container

ubuntu

7 Normal Started 69s kubelet Started container

ubuntu

フ (dependencyGraph)，イベントの一覧 (events) を
と る ．出 力 は 障 害 の 原 因 箇 所 の ス コ ア の 一 覧
(endToEndEventCounts) である．障害の原因箇所のス
コアの一覧は，リソース名とスコアのペアの一覧である．
スコアの一覧はスコアの降順でソートされている．1行目
から 8行目では入力されたトレースの一覧からエラーを含
むトレースを探す．トレースを構成するスパンにエラーが
含まれていた場合に，errorTracesにスパンの Pod名とタ
イムスタンプのペアを追加する．これによりトレースの一
覧からエラーを含むトレースだけを取り出す．9行目から
15行目ではエラーを含むスパンに対応するPodに関連する
リソースの依存グラフを作成する．9行目の LOADMAP-

PINGFILE関数では事前に作成したリソースの種類ごと
に依存関係をもつ設定項目の一覧 (依存項目リスト)を読み
込む．表 1に依存項目リストの例を示す．リソースが Pod

である場合，別のリソースであるConfigMapとの依存関係
は，リソース定義にある.spec.volumes[].configMap.name

と.spec.env.valueFrom.secretKeyRef.name に指定されて
いる．また，PVC(Persistent Volume Claim) のリソー

表 1 リソースの種類ごとに依存関係をもつ設定項目の一覧の例
依存元 依存先 抽出方法

Pod ConfigMap
.spec.volumes[].configMap.name,

.spec.env.valueFrom.secretKeyRef.name

PVC PV
.spec.volumeName,

.spec.storageClassName

ス が 永 続 デ ィ ス ク を あ ら わ す リ ソ ー ス で あ る
PV(Persistent Volume) との依存関係は，リソース定義
にある.spec.volumeName と.spec.storageClassName に指
定されている．10行目では List型 routeListを定義して
おり，この変数にはリソース間の依存関係をエンドツーエ
ンド (始点から終点)が記録される．11行目から 13行目で
はエラーを含むトレース errorTracesの中から Pod名と
タイムスタンプのペアを取り出し，BUILDDEPGRAPH

関数を呼び出す．BUILDDEPGRAPH関数はリソース名
を引数とする．BUILDDEPGRAPH関数はリソース名を
もとに依存関係のあるグラフを LOADMAPPINGFILE関
数から読み込んだ依存項目リストをもとに作成する．14行
目から 26行目では，BUILDDEPGRAPH関数を定義して
いる．15行目のGETRESOURCEDEFではリソース定義
を取得する．16行目ではリソース定義をパースし，設定
項目であるフィールドに分割する．17行目から 25行目で
は，フィールドの要素が依存項目リストに含まれているか
確認する．含まれている場合には BUILDDEPGRAPH関
数を呼び出す．含まれない場合には，リソース間の依存関
係を routeListに追加する．29行目から 39行目では依存
グラフから原因を特定する．33行目の GETERREVEN-

TWITHIN5MINでは，トレースの時刻をもとにエラーの
発生した前後 5 分のイベントのうちエラーのものの一覧
を取得している．40行目から 45行目では，依存グラフか
らイベントの数からスコアを計算している．イベントの数
は，依存グラフからエンドツーエンドのリソースの数を取
得し，その数をトレースの数で割ることで計算される．

ユースケース・シナリオ
図 3にユースケース・シナリオを示す．図 3はシステム

管理者が分散トレーシングを使いシステム障害の原因を調
査する状況をあらわす．分散トレーシングWeb UIは分散
トレーシングのためのユーザーインターフェースである．
システム管理者はシステム障害が発生した際にシステム障
害の原因箇所を見つけるためにWeb UIの個別トレース画
面にアクセスする．Web UIにはタイムスタンプ順に並べ
られた一連のリクエスト処理が表示される．1つのトレー
スは複数のスパンで構成されており，システム管理者はエ
ラーを含むスパンをWeb UIを使い見つける．エラーがス
パン間で伝搬されている場合には，最初にエラーの発生し
たスパンを探す．個別トレース画面では，エラーの発生し
ている原因のスパンやマイクロサービスの特定が可能で

アルゴリズム 1 Event RCAの内部処理
Require: traces, dependencyGraph, events

Ensure: endToEndEventCounts ▷ Map[str, float]

/* エラーを含むスパンを探す */

1: errorTraces← ∅ ▷ map[str, str]

2: for trace← traces do

3: for span← trace do

4: if span contains error then

5: errorTraces[span.podName]← span.timestamp

6: end if

7: end for

8: end for

/* エラーを含むスパンに対応する Podに関連するリソースの依
存グラフを作成する */

9: fieldMap← LoadMappingFile ▷ Map[str, str]

10: routeList← ∅ ▷ List[str]

11: for podName, timestamp← errorTraces do

12: BuildDepGraph(podName)

13: end for

14: function BuildDepGraph(rsrcName, rsrcChain)

15: resourceDef ← GetResourceDef(rsrcName)

16: parsedDef ← ParseResourceDef(resourceDef)

17: for fieldName ∈ parsedDef do

18: childName← fieldMap[fieldName]

19: if childName ̸= ∅ then ▷ has child resource

20: rsrcChain← rsrcChain+ ” > ” + childName

21: BuildDepGraph(childName, rsrcChain)

22: else ▷ has no child resource

23: routeList← routeList ∪ {rsrcChain}
24: end if

25: end for

26: end function

/* 依存グラフから原因を特定する */

27: endToEndEventCounts← ∅ ▷ Map[str, float]

28: totalEventCount← 0

29: for routeChain← routeList do

30: rsrcNames← routeChain.split(” > ”)

31: eventCount← 0

32: for rsrcName← rsrcNames do

33: events← GetErrEventsWithin5Min(rsrcName)

34: eventCount← eventCount+ length(events)

35: end for

36: lastRsrcName← rsrcNames[length(rsrcNames)− 1]

37: endToEndEventCounts[routeChain]← eventCount

38: totalEventCount← totalEventCount+ eventCount

39: end for

/* スコアの計算を行う */

40: for routeChain, eventCount ← endToEndEventCounts

do

41: rsrcNames← routeChain.split(” > ”)

42: score← eventCount/totalEventCount

43: lastRsrcName← rsrcNames[length(rsrcNames)− 1]

44: endToEndEventCounts[lastRsrcName]← score

45: end for

46: return SortByScore(endToEndEventCounts)

ある．一方で，エラーの原因がミドルウェアにある場合に
は，原因の調査が分散トレーシング Web UIだけでは行え
ない．
分散トレーシング Web UI に提案手法を表示するため

個別トレース画面

スパン
スパン スパン
スパン

スコアの一覧画面

(2)クリック

timestamp

エラー

(3)遷移

分散トレーシング Web UI

スコア リソース イベント

0.81 (Pod) OSD 1 ...

0.64 (PV) author
MongoDB ...

0.35 (Pod) author
MongoDB ...

...

スコアスコアスコア

データベース

原因

箇所

システム
管理者

(1)

図 3 ユースケース・シナリオ

に，スコアの一覧画面を追加する．スコアの一覧画面では，
原因の確率をあらわすスコア，原因と想定したリソース，
リソースに関連したイベントが表示される．スコアが高い
ほど上位の行に表示される．スコアの一覧画面に表示する
スコアは，データベースに保存されている．データベース
に保存されているスコアは，Event RCAからの出力され
たものである．

4. 評価
評価方法
提案手法による障害の原因調査の出力を評価するため

に，上位 5件の適合率 (Precision)と再現率 (Recall)を計
測する．これらの指標は原因調査の研究で評価指標として
使用されている [17]．出力された障害箇所の上位 5件の中
に原因が含まれる割合を計測する．エンジニア 386人への
調査結果によると，障害の原因調査の出力のうち重視する
結果は上位 5件であった [25]．そのため，提案手法により
出力された原因箇所の上位 5件の中に原因が含まれる割合
を評価指標に使用する．
一連の障害対応のプロセスには，障害の原因特定と対処

が含まれる．障害の原因調査にかかる時間が提案手法によ
り短縮されたかを評価するために，実際にシステム管理者
により障害の原因調査にかかる時間を計測する．比較対象
は手動での障害の原因調査，Event RCAを使用した原因
調査，関連研究の手法を使用した障害の原因調査である．
図 4に評価方法を示す．障害シナリオをシステムで発生

した障害を記録したシナリオである．Chaos Meshはシナ
リオをもとに障害を再現するツールである．Kubernetes

クラスタではWebアプリケーションのDoktorが動作して
いる．Doktorに Chaos Meshで障害を発生させ，依存グ

障害シナリオ

障害の原因箇所スコア

スコアリスト

Event RCA

障害の原因箇所

Evaluator

Chaos Mesh

Doktor

Kubernetes
クラスタ

エラー
SigNoz

依存グラフ

イベント

トレース

図 4 評価方法

ラフやイベントを収集する．Doktorのトレースやメトリ
クスはデータベースの SigNozに保存する．Event RCAは
提案ソフトウェアであり，Event RCAは依存グラフ，イ
ベント，トレースをもとに障害の原因調査を行う．Event

RCAはスコアと原因箇所のペアのリストであるスコアリ
ストを出力する．Evaluatorは評価を行うソフトウェアで
あり，障害シナリオに含まれる障害の原因箇所，スコアリ
ストに含まれる障害の原因箇所を比較する．

障害シナリオ
実際に発生したシステム障害をもとに障害シナリオを

3つ作成する．1つ目のシナリオは Rook Cephでの OSD

Pod のエラーである．このシナリオでは Rook Ceph が
Kubernetesクラスタで動作しており，Kubernetesクラス
タの 1ノードが応答しないため再起動を行った．再起動の
際に Podが正常に終了せずデータの破損が発生した．こ
のシナリオの再現には Kubernetesクラスタの 1ノードを
ハードウェア再起動を行う．
2つ目のシナリオは Kubernetesのコントロールプレー

ンに対する過剰なリクエスト送信である．このシナリオ
は OpenAI社の Kubernetesクラスタで発生した障害のポ
ストモーテム*7から作成した．Kubernetes クラスタに配
置された監視用のソフトウェアが過剰に Kubernetesクラ
スタのコントロールプレーンにリクエストを送信し，コン
トロールプレーンが過負荷になった．このシナリオでは
Kubernetesクラスタに cAdvisorを配置し，スクレイピン
グの間隔を数秒ごとに行いコントロールプレーンに対する
過剰なリクエストを送信する．
3つ目のシナリオでは DoorDash社の Kubernetesクラ

スタで発生した障害のポストモーテム*8から作成した．こ
*7 https://status.openai.com/incidents/ctrsv3lwd797
*8 https://careersatdoordash.com/blog/how-to-handle-

の障害が発生した際には Kubernetesクラスタに配置され
たアプリケーションコンテナの Readiness Probeが 1秒に
設定されていた．また，Readiness Probeでチェックされ
る APIエンドポイントには Redisへのアクセスが含まれ
ていた．Redisサーバのレイテンシが 1秒を超えたときに，
アプリケーションサーバの Readiness Probe が 1 秒を超
え，ヘルスチェックに失敗した．その結果，新たなアプリ
ケーションコンテナの起動に失敗した．このシナリオでは
Readiness Probe のレイテンシを 1秒に設定した状況で，
Chaos Meshでアプリケーションサーバのレイテンシに 2

秒を追加で付与する．

実験環境
実験にはマイクロサービスアーキテクチャで設計され

たWebサービスである Doktor を使用する．図 5に実験
環境を示す．Doktor は複数のマイクロサービス (stats，
front，paper，fulltext，author，thumbnail)から構成され
る．これらのマイクロサービスはコンテナとして動作して
いる．各マイクロサービスのアプリケーションコンテナに
は OpenTelemetry SDKが導入されており，ログやトレー
ス，メトリクスが収集されている．アプリケーションコンテ
ナは Kubernetesクラスタに配置されている．Kubernetes

クラスタは 4台の仮想マシンで構成されている．マスター
ノードは 1台の仮想マシンで構築されている．ワーカノー
ドは 3台の仮想マシンで構成されている．Kubernetesクラ
スタのノードを構成する全てのマシンは同種のハードウェ
ア構成 (vCPU: 8コア，メモリ: 8GB，ディスク: 40GB)で
ある．Kubernetesエンジンには K3s(バージョン: 1.31.5)

を使用した．監視には SigNozを使用している*9．SigNoz

はテレメトリの保存および取得が可能な監視システムであ
る．Doktorの各マイクロサービスが生成するテレメトリ
は OpenTelemetryにより収集され，SigNozに転送・保存
される．
リクエスト処理フローは以下のように動作する．(1)ユー

ザがウェブブラウザからリクエストを送信すると，front

サービスがリクエストを受け付ける．(2)front サービス
はアクセスされた URL に応じて各マイクロサービスに
HTTPリクエストを送信する．(3)各マイクロサービスは
HTTPリクエストを受け取るとリクエストに応じた情報を
frontマイクロサービスに返す．(4)これらの情報は front

サービスに統合され，最終的に HTMLを含む HTTPレス
ポンスとして利用者に返される．

5. 議論
提案手法では同一のトレースに複数の異なる原因のエ

ラーが含まれているとそれらを分けて障害の原因調査がで
kubernetes-health-checks/

*9 https://signoz.io/

paperfront

author

Doktor

thumbnail

fulltextstats

ユーザ

マイクロサービス ノード

Kubernetes
クラスタ

Logs

Traces

Metrics

SigNoz

コンテナ

(2)

(3)
(1)

(4)

図 5 Doktor のシステム構成

きない．大規模な商用環境のシステムでは周期的に繰り返
し発生するエラーがある [21]．システム障害に関連したト
レースの中に周期的に繰り返し発生するエラーと障害原因
のエラーが含まれていると，提案手法ではそれらを識別で
きない．そのため，周期的に繰り返し発生するエラーを含
めた原因調査が行われる．解決策の 1つは，周期的に繰り
返し発生するエラーとそれ以外のエラーの識別によるフィ
ルタリングである．平常時のトレースを収集し，トレー
スに含まれる宛先 URLとトレースに含まれるスパンのエ
ラーメッセージをデータベースに記録しておく．障害発生
時にはデータベースに保存された宛先 URLとスパンのエ
ラーメッセージを比較し，周期的に繰り返し発生するエ
ラーであるか比較する．これにより同一のトレースに複数
のエラーが含まれる場合に，それらを分けた障害の原因調
査が可能になる．

6. おわりに
マイクロサービスアーキテクチャで設計されたシステム

での障害の原因調査では，システム管理者は複数のテレメ
トリを組み合わせて使用する．ある障害が起きたときに，
アプリケーションでのエラーの原因がミドルウェアにある
と，その原因の調査には複数のデータソースを解析する必
要がある．こうした作業はシステム管理者が手動で行って
おり，システム管理者にとって時間のかかる作業になって
いる．本稿ではミドルウェアから出力されるイベントと依
存グラフ，トレースを使用した障害の原因調査の手法を提
案する．提案手法ではアプリケーションから出力されたト
レースに関連する依存グラフを作成する．依存グラフをも
とにリソースごとのイベントの時系列の順序を求め，障害
原因の候補をリストアップする．インターネット上に公開
したマイクロサービスアーキテクチャで設計されたWeb

アプリケーションを対象に障害を再現し，提案手法の障害
原因の候補に実際の原因が含まれるかを評価する．
謝辞 本研究は，JSPS科研費 JP23K11073, JP23K11087

の助成を受けたものである．

参考文献
[1] Mendonça, N. C., Box, C., Manolache, C. and Ryan, L.:

The monolith strikes back: Why istio migrated from mi-
croservices to a monolithic architecture, IEEE Software,
Vol. 38, No. 05, pp. 17–22 (2021).

[2] Thönes, J.: Microservices, IEEE software, Vol. 32, No. 1,
pp. 116–116 (2015).

[3] Weil, S., Brandt, S. A., Miller, E. L., Long, D. D.
and Maltzahn, C.: Ceph: A scalable, high-performance
distributed file system, Proceedings of the 7th Confer-
ence on Operating Systems Design and Implementation
(OSDI’06), pp. 307–320 (2006).

[4] Yu, G., Chen, P., Li, Y., Chen, H., Li, X. and Zheng,
Z.: Nezha: Interpretable fine-grained root causes analy-
sis for microservices on multi-modal observability data,
Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering, pp. 553–565 (2023).

[5] Brandón, Á., Solé, M., Huélamo, A., Solans, D., Pérez,
M. S. and Muntés-Mulero, V.: Graph-based root cause
analysis for service-oriented and microservice architec-
tures, Journal of Systems and Software, Vol. 159, p.
110432 (2020).

[6] Wu, L., Tordsson, J., Bogatinovski, J., Elmroth, E. and
Kao, O.: Microdiag: Fine-grained performance diagno-
sis for microservice systems, 2021 IEEE/ACM Interna-
tional Workshop on Cloud Intelligence (CloudIntelli-
gence), IEEE, pp. 31–36 (2021).

[7] Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Li, W. and
Ding, D.: Fault analysis and debugging of microservice
systems: Industrial survey, benchmark system, and em-
pirical study, IEEE Transactions on Software Engineer-
ing, Vol. 47, No. 2, pp. 243–260 (2018).

[8] Yu, G., Chen, P., Li, P., Weng, T., Zheng, H., Deng,
Y. and Zheng, Z.: Logreducer: Identify and reduce
log hotspots in kernel on the fly, 2023 IEEE/ACM
45th International Conference on Software Engineering
(ICSE), IEEE, pp. 1763–1775 (2023).

[9] Thalheim, J., Rodrigues, A., Akkus, I. E., Bhatotia,
P., Chen, R., Viswanath, B., Jiao, L. and Fetzer, C.:
Sieve: Actionable insights from monitored metrics in
distributed systems, Proceedings of the 18th ACM/I-
FIP/USENIX middleware conference, pp. 14–27 (2017).

[10] Zhao, N., Chen, J., Yu, Z., Wang, H., Li, J., Qiu, B.,
Xu, H., Zhang, W., Sui, K. and Pei, D.: Identifying
bad software changes via multimodal anomaly detection
for online service systems, Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, pp. 527–539 (2021).

[11] Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Liu, D., Xi-
ang, Q. and He, C.: Latent error prediction and fault lo-
calization for microservice applications by learning from
system trace logs, Proceedings of the 2019 27th ACM
joint meeting on European software engineering con-
ference and symposium on the foundations of software
engineering, pp. 683–694 (2019).

[12] Ghosh, S., Shetty, M., Bansal, C. and Nath, S.: How
to fight production incidents? an empirical study on a
large-scale cloud service, Proceedings of the 13th Sym-
posium on Cloud Computing, pp. 126–141 (2022).

[13] Gu, S., Rong, G., Ren, T., Zhang, H., Shen, H., Yu,
Y., Li, X., Ouyang, J. and Chen, C.: Trinityrcl: Multi-
granular and code-level root cause localization using mul-
tiple types of telemetry data in microservice systems,

IEEE Transactions on Software Engineering, Vol. 49,
No. 5, pp. 3071–3088 (2023).

[14] Huang, P., Guo, C., Lorch, J. R., Zhou, L. and Dang,
Y.: Capturing and enhancing in situ system observabil-
ity for failure detection, 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pp. 1–16 (2018).

[15] Wu, L., Tordsson, J., Elmroth, E. and Kao, O.: Mi-
crorca: Root cause localization of performance issues
in microservices, IEEE/IFIP Network Operations and
Management Symposium (NOMS) (2020).

[16] Pham, L., Ha, H. and Zhang, H.: Baro: Robust root
cause analysis for microservices via multivariate bayesian
online change point detection, Proceedings of the ACM
on Software Engineering, Vol. 1, No. FSE, pp. 2214–
2237 (2024).

[17] Lin, J., Chen, P. and Zheng, Z.: Microscope: Pinpoint
performance issues with causal graphs in micro-service
environments, International Conference on Service-
Oriented Computing, Springer, pp. 3–20 (2018).

[18] Yu, G., Chen, P., Chen, H., Guan, Z., Huang, Z., Jing,
L., Weng, T., Sun, X. and Li, X.: Microrank: End-to-end
latency issue localization with extended spectrum analy-
sis in microservice environments, Proceedings of the Web
Conference 2021, pp. 3087–3098 (2021).

[19] Li, Z., Chen, J., Jiao, R., Zhao, N., Wang, Z., Zhang,
S., Wu, Y., Jiang, L., Yan, L., Wang, Z. et al.: Practical
root cause localization for microservice systems via trace
analysis, 2021 IEEE/ACM 29th International Sympo-
sium on Quality of Service (IWQOS), IEEE, pp. 1–10
(2021).

[20] He, S., Lin, Q., Lou, J.-G., Zhang, H., Lyu, M. R. and
Zhang, D.: Identifying impactful service system prob-
lems via log analysis, Proceedings of the 2018 26th ACM
joint meeting on European software engineering con-
ference and symposium on the foundations of software
engineering, pp. 60–70 (2018).

[21] Lin, Q., Zhang, H., Lou, J.-G., Zhang, Y. and Chen,
X.: Log clustering based problem identification for on-
line service systems, Proceedings of the 38th interna-
tional conference on software engineering companion,
pp. 102–111 (2016).

[22] Zhang, C., Peng, X., Sha, C., Zhang, K., Fu, Z., Wu,
X., Lin, Q. and Zhang, D.: Deeptralog: Trace-log com-
bined microservice anomaly detection through graph-
based deep learning, Proceedings of the 44th interna-
tional conference on software engineering, pp. 623–634
(2022).

[23] Lee, C., Yang, T., Chen, Z., Su, Y. and Lyu, M. R.:
Eadro: An end-to-end troubleshooting framework for
microservices on multi-source data, 2023 IEEE/ACM
45th International Conference on Software Engineering
(ICSE), IEEE, pp. 1750–1762 (2023).

[24] Yao, Z., Pei, C., Chen, W., Wang, H., Su, L., Jiang,
H., Xie, Z., Nie, X. and Pei, D.: Chain-of-event: Inter-
pretable root cause analysis for microservices through
automatically learning weighted event causal graph,
Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineer-
ing, pp. 50–61 (2024).

[25] Kochhar, P. S., Xia, X., Lo, D. and Li, S.: Practitioners’
expectations on automated fault localization, Proceed-
ings of the 25th international symposium on software
testing and analysis, pp. 165–176 (2016).

