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Abstract—A system failure caused by middleware requires
system administrator to investigate multiple telemetry data such
as logs, traces, and metrics across the application and middle-
ware. Conventional methods focus on application telemetry data
while these methods lack analysis of middleware’s telemetry data.
System administrator needs to investigate multiple telemetry
data to find the root cause of the system failure. This paper
proposes a method of root cause analysis for middleware issues
by resource events, dependency graphs, resource definitions,
and traces. The proposed method constructs dependency graphs
by identifying Kubernetes resources from traces and analyzing
Kubernetes resource configurations. The method identifies root
cause candidates by scoring increases in Kubernetes resource
events. Evaluation experiments measured Hits@k and MRR of
the proposed method and baseline methods. Evaluation results
show that MRR of the proposed method is approximately 0.28
greater than the baseline method on average and Hits@5 of the
proposed method is approximately 0.88 greater than the baseline
method on average.

Index Terms—Root Cause Analysis, Distributed Tracing

I. INTRODUCTION

Cloud and Distributed Systems Laboratory (CDSL) operates
the web service called Doktor'. Doktor is a microservice-
based application deployed on a Kubernetes cluster. Rook
Ceph? is used for persistent storage on the cluster. Rook Ceph
failure occurred in Doktor on June 21, 2025. Fig. 1 shows
the overview of the failure. The author microservice (author
MS) runs on a Kubernetes node. The author MS consists of
an application container (App Pod), a MongoDB container
(Mongo Pod), and a persistent volume (PV) for the Mongo
Pod. Rook Ceph has an OSD Pod for the PV. The OSD Pod
was in CrashLoopBackOff state when a Kubernetes node hung
and was restarted. The system administrator received alerts
about the failure and investigated metrics, logs, and traces to
find the root causes. The cause of the failure was an error in
the OSD Pod of Rook Ceph. Listing 1 shows the result of
kubectl command. Line 1 represents kubectl get command to
get the state of the OSD Pod. OSD (Object Storage Daemon)
is a process for running a storage server. Line 2 represents
OSD Pod “rook-ceph-osd-3-6¢c5¢c8bf688-n4d5z” that was in
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Fig. 1: Overview of the failure in Doktor

Listing 1: The result of kubectl command

$ kubectl get pod -A -o wide | grep osd
2| rook—-ceph rook-ceph-osd-3-6c5c8bf688-
n4d5z 0/2 Init:CrashLoopBackOff

—

Listing 2: Logs of the OSD Pod related to the error

1| $ kubectl logs rook-ceph-osd-3-6c5c8bf688

-n4d5z -n rook-ceph -c expand-bluefs

2| 2025-06-21T09:40:34.447+0000 7£dddf249980
-1 rocksdb: Corruption: SST file is

ahead of WALs in CF default

3] 2025-06-21T09:40:34.447+0000 7fdddf249980
-1 bluestore (/var/lib/ceph/osd/ceph-3)

_open_db erroring opening db:

CrashLoopBackOff state. As a result, the Mongo Pod failed
to mount the persistent volume (PV), causing an error in the
author MS.

Listing 2 shows the OSD Pod logs related to the error.
Line 1 shows the kubectl logs command. Line 2 indicates
that the SST (Sorted String Table) file is ahead of WALSs in
RocksDB and an inconsistency occurred. RocksDB (rocksdb)
is a database used for storing metadata in BlueStore. Line 3
indicates that an error occurred on opening RocksDB in Blue-
Store (bluestore). BlueStore is a storage backend component
of Rook Ceph.

The series of failure investigation processes used a com-
bination of telemetry (traces, logs, and metrics). System
administrator required different methods to check each type
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of telemetry. For example, system administrator executed
“kubectl describe” commands or “kubectl get” commands
to check the status of resources in the Kubernetes cluster.
System administrator issued search queries from web UI to log
servers to search for application logs. Manual operations for
log, metrics, and traces required system administrator to have
experience of system diagnostics and was time-consuming and
error-prone [1]-[3]. Investigation results for 22 system failures
show that system administrator spent more than one hour to
investigate logs or traces in most incident handling [4].
Middleware becomes involved in failures in addition to
applications as system failures become more complex [5],
[6]. Investigation results at Microsoft show that middleware
and infrastructure-related failures account for 26.3% of all
failures [7]. Failures involving both applications and middle-
ware increase the difficulty of root cause analysis for system
administrator as system failures become more complex.

Issue

System administrator manually investigates middleware logs
and traces to identify the cause of errors in failures caused
by Rook Ceph errors. Distributed systems represented by mi-
croservice architecture contain more components than mono-
lithic systems. The number of investigation targets increases
as the number of components increases. Manual investigation
requires professional knowledge, cross-team collaboration and
operational experience [8]. System administrator lacking suffi-
cient experience for root cause analysis is required to engage in
trial-and-error processes. This requires extended investigation
time. The time required for root cause analysis is included
in MTTR (Mean Time to Repair). This necessitates rapid
cause investigation. There are root cause analysis methods
with collecting and analyzing application telemetry [9]. These
methods by multiple data sources such as application latency
and resource dependencies require further investigation. Sys-
tem administrator lacking sufficient experience for root cause
analysis requires manual investigation of multiple telemetry
data sources on system failure.

II. RELATED STUDY

Root cause analysis is a time-consuming task for system ad-
ministrator, so that research on automation is conducted. Root
cause analysis methods using single data sources and multiple
data sources have been proposed. Metrics-based methods were
proposed [3], [9]. Trace-based methods were proposed [10],
[11]. Log-based methods were proposed [12], [13]. These
single data source-based methods failed to identify problems
when the data source lacked failure symptoms, resulting in
insufficient accuracy of failure cause identification.

Multi modal RCA methods using multiple data sources
were proposed [1], [14]-[16]. These methods used multiple
data source telemetry for root cause analysis. DeepTralog
used deep learning to detect anomalies using multiple data
source telemetry [14]. The method used logs and traces
to collect application dependencies and build a dependency
graph. This study focused on anomaly detection rather than

root cause analysis. Therefore, this method addresses only
anomaly detection and lacks capabilities for root cause anal-
ysis caused by middleware. Eadro used supervised machine
learning for root cause analysis using multiple data source
telemetry [15]. It showed higher accuracy than unsupervised
machine learning. This method required labeling training data,
which was a burdensome task for system administrator. The
method remains to be improved without labeling training data.
Nezha integrated traces and logs to enable detailed tracking
of a series of processing processes on a request unit [1]. This
method lacks a mechanism to align the logs of middleware and
the traces of applications. Therefore, this method addresses
application-level issues and lacks capabilities for root cause
analysis caused by middleware. A study conducted root cause
analysis by deriving simple event causal graphs from past
failures and calculating weights [16]. The study used past
failures in datasets. Past failures had undergone recurrence
prevention measures and had low probability of recurrence,
making applicable cases limited.

III. PROPOSED METHOD

This paper proposes EventRCA that is a method of root
cause analysis for middleware issues by resource events,
dependency graphs, and traces. EventRCA creates dependency
graphs of Kubernetes resources from traces corresponding to
these resources. It finds resource events for each resource
based on the dependency graphs. EventRCA obtains resource
events for each resource and determines root cause candidates
by scoring increases in Kubernetes resource events. The main
challenge is determination of root cause candidates with scor-
ing for middleware issues. The key contribution is to identify
root cause candidates for middleware issues without manually
investigating multiple telemetry data sources.

Fig. 2 shows the overview of the proposed method. Mi-
croservices represent a set of applications running on a Kuber-
netes cluster. Traces are collected from microservices to track
a series of request processing across microservices. Microser-
vices are deployed on the Kubernetes cluster as containers.
Each resource running in Kubernetes cluster is defined by
resource definition in YAML format. Kubernetes generates
events for each resource when resources are created, updated,
or deleted. EventRCA is the proposed method which collects
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Fig. 2: Overview of the proposed method



traces, resource definitions, and events as input. It creates a
dependency graph of Kubernetes resources from traces and
resource definitions and finds resource events for each resource
based on the dependency graph. It determines root cause
candidates with scores by resource event count changes. Score
calculation of EventRCA takes dependency graph and resource
events as input. It calculates scores for end to end routes of
dependency graph and determines root cause candidates with
scores. When a system failure occurs, the following process
is executed.

(1) EventRCA collects traces from Microservices.

(2) EventRCA collects resource definitions corresponding to
traces from the Kubernetes cluster.

(3) EventRCA constructs a dependency graph from the traces
and resource definitions.

(4) Score calculation of EventRCA collects events from the
Kubernetes cluster.

(5) Score calculation of EventRCA identifies root cause
candidates by scoring increases in Kubernetes resource
events and outputs scores.

The proposed method uses static analysis approach with
resource definition to create the dependency graph. Static
analysis approach is a conventional approach. This approach
allows for a light footprint and has low resource consumption
as compared with dynamic analysis approach. The depen-
dency graph is created by running resource definition through
Kubernetes API. Resources in Kubernetes have dependencies
to other resources. Fig. 3 shows dependency graph creation
process. The trace represents a trace. The span represents a
span that is a part of the trace. Kubernetes resource names are
obtained from each span using trace metadata. For example,
Pod2 is obtained from span2. The metadata is collected
on trace creation in the application. The resource definition
corresponding to the resource name is obtained from API
server of Kubernetes cluster. Kubernetes cluster represents
a group of Kubernetes nodes. The resource definition con-
tains dependency parameters which represent relationships
to other resources. For example, the resource definition of
Pod2 includes “author: app”. The resources that include the
dependency parameters in the resource definition are collected.
For example, a resource definition of “kind: Service” includes
“app: author”, the resource has a dependency to the resource
“kind: Pod”. These processes are applied to all traces.

Listing 3 shows an example of dependency list. The from
field represents source resource and the to field represents
destination resource. For example, Pod resource named “front-
app-deploy-6b4dbf8d84-rbwvx” in front namespace has a de-
pendency to ConfigMap resource named “‘istio-ca-root-cert” in
front namespace.

Listing 4 shows an example of Kubernetes events that are
collected from a Kubernetes cluster. Events have Type, Rea-
son, Age, From, and Message attributes. Type field includes
the state of the event. Reason field includes the type of event.
Age field includes the timestamp when the event occurred.
From field represents the resource that caused the event.

resource
trace definition kind: Service
spec:
spani - Pod1—>» selector:
span2 \_ app: author
: > POdS_)CI Dependency
I S Pod2
Span to Pod > Pod2—> a?gind: Pod
metadata:
Kubernetes labels: \ 4
cluster app: author

Fig. 3: Dependency graph creation process

Listing 3: An example of dependency list

{

"from":"front/Pod/front-app-deploy-6
b4dbf8d84-rbwvx",
"to":"front/ConfigMap/istio-ca-root—cert"

}

AW =

Listing 4: An example of Kubernetes events
1| Type Reason Age From Message

3] Normal Scheduled 69s default-scheduler
Successfully assigned default/ubuntu to
clematis-worker2

Message includes the details of the event. For example, the
event in the line 3 represents that the Pod (default/ubuntu) was
scheduled 69 seconds ago to the Kubernetes node clematis-
worker2.

EventRCA outputs failure cause candidates as a list. The
output includes a score representing the probability and a pair
of target resources. The score is a decimal number between O
and 1. The output is sorted by score in ascending order. For
example, if the score is 0.9 and the target resource is Pod A,
the probability that Pod A is the cause of the error is 90%.

Algorithm 1 shows the score calculation process. The
algorithm takes a dependency list as input and outputs
scores for each end-to-end path. The dependency list con-
tains pairs of source and destination resources. Line 1 calls
GET_PATHS which obtains all end-to-end paths from the
dependency list. An end-to-end path is a sequence of re-
sources from the source resource to the destination re-
source. For example, the end-to-end path of the dependency
list in Listing 3 is “(front/Pod/front-app-deploy-6b4dbf8d84-
rbwvx, front/ConfigMap/istio-ca-root-cert)”. Line 2 initializes
the variable of counts as an empty list. It represents the
number of events for each end-to-end path. Line 3 to 9
calculate the number of events for each end-to-end path. Line 4
initializes the variable of count as 0. It represents the number
of events for the current end-to-end path. Lines 5 to 7 count
the number of events for each resource in the current end-
to-end path. Line 6 calls GET_EVENTS which obtains event
counts for the resource using Kubernetes API and updates the
variable of count. Line 8 combines the variable of counts
with a pair of the end-to-end path and the number of events
for the current end-to-end path. For example, if counts is



Algorithm 1 Score calculation process

Input: dependencyList: list of (src, dest) pairs
Output: result: list of (path, score) pairs
. paths < GET_PATHS(dependencyList)
: counts + ||
. for each path € paths do
count < 0
for each resource € path do
count <— count + GET_EVENTS(resource)
end for
counts < counts U (path, count)
: end for
. total < sum of all count in counts
: result + []
. for each (path, count) € counts do
score < count/total
result < result U (LAST(path), score)
: end for
: return result sorted by score in descending order
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empty and the end-to-end path is “(front/Pod/front-app-deploy-
6b4dbf8d84-rbwvx, front/ConfigMap/istio-ca-root-cert)” and
the number of events is 10, the variable of counts is
updated to “((front/Pod/front-app-deploy-6b4dbf8d84-rbwvx,
front/ConfigMap/istio-ca-root-cert), 10)”. Line 10 calculates
the total number of events for all end-to-end paths. Line 11
initializes the variable of result as an empty list. It represents
the list of pairs of the end-to-end path and the score. Lines 12
to 15 calculate the score for each path and add the pair of the
path and the score to the variable of result. Line 13 divides
the number of events for the current path by the total number
of events for all end-to-end paths and updates the variable of
score. Line 14 adds the pair of the last resource in the path
and the score to the variable of result. Line 16 returns the
variable of result sorted by score in descending order.

Use case scenario

Fig. 4 represents a situation where system administrator
investigates the causes of system failures using distributed
tracing. The distributed tracing Web Ul is a user interface for
distributed tracing. System administrator accesses individual
trace screens in the Web Ul to find the root causes of system
failures when system failures occur. The Web UI displays a
series of request processing arranged in timestamp order. One
trace consists of multiple spans, and system administrator finds
spans containing errors using the Web UI. When errors propa-
gate between spans, system administrator searches for the span
where the error first occurred. Individual trace screens enable
identification of spans and microservices causing errors. How-
ever, when error causes lie in middleware, cause investigation
cannot be performed using only the distributed tracing Web UI.
A score list screen is added to display the proposed method in
the distributed tracing Web UI. The score list screen displays
scores representing cause probabilities, resources assumed to
be causes, and events related to resources. Higher scores are
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Fig. 4: Use case scenario

displayed in upper rows. Scores displayed on the score list
screen are stored in a database. Scores stored in the database
are output from EventRCA.

IV. EVALUATION
Evaluation metrics and Evaluation method

Execution time is measured to evaluate the time required to
identify root cause candidates. It represents the duration from
the start to the end of program execution. Mean Reciprocal
Rank (MRR) is measured to evaluate the output of root
cause analysis by the proposed method. Top-k accuracy does
not represent the order of root cause analysis results. MRR
represents the order of root cause analysis results. The value
is used as an evaluation KPI in RCA studies [17]-[19]. Top-k
Hits (Hits@k) is measured to evaluate a list of root cause
candidates. Hits@k represents the number of correct root
cause candidates in the top-k results. The value of k is set
to {1,2,3,4,5}. Survey results from 386 engineers showed
that they wanted top-5 results as root cause candidates [20].

Fig. 5 shows the evaluation method. Failure scenario repre-
sents a scenario of system failure. Doktor is deployed on the
Kubernetes cluster. Traces are stored in SigNoz. EventRCA
collects events from Kubernetes cluster and traces from Sig-
Noz. Evaluator is a software that calculates evaluation metrics
(MRR and Hits@k). It compares the fault targets and the score
list. The fault targets contain the correct root cause candidates.
The score list contains pairs of scores and resource names as
root cause candidates.

Failure scenarios

Scenario 1 involves OSD Pod errors in Rook Ceph. Rook
Ceph operates in a Kubernetes cluster. One node in the Ku-
bernetes cluster becomes unresponsive and requires a restart.
The Pod fails to terminate properly during the restart. Data
corruption results from this failure. This scenario is reproduced
by performing a restart of one node in the Kubernetes cluster.

Scenario 2 actually occurred in Doktor’s development envi-
ronment on November 21, 2025. One of the worker nodes in
the Kubernetes cluster experienced high memory usage and
OOM kill. The OOM kill caused MinlO object storage in
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Fig. 5: Evaluation method

paper microservice to be unavailable. MinlO Pod was restarted
on the other node when the OOM kill occurred. The restarted
MinlO Pod failed to read and write objects because multiple
volume attachments occurred. As a result, paper download
requests to the paper microservice failed.

Experimental environment and Software implementation

The experiment uses Doktor as a web application. Doktor
consists of multiple microservices (stats, front, paper, fulltext,
author, thumbnail). These microservices operate as containers.
OpenTelemetry SDK is installed in the application containers
of each microservice, and logs, traces, and metrics are col-
lected. Application containers are deployed on a Kubernetes
cluster. The Kubernetes cluster consists of 1 master node and 3
worker nodes. All nodes constituting Kubernetes cluster have
the same hardware configuration (vCPU: 8 cores, Memory:
8GB, Disk: 40GB). K3s v1.31.5 is used as the Kubernetes en-
gine. SigNoz is used for monitoring®. SigNoz is a monitoring
system capable of storing and retrieving telemetry. Telemetry
generated by each microservice of Doktor is collected by
OpenTelemetry and transferred and stored to SigNoz.

EventRCA consists of four functions. The function of
get_trace loads traces from SigNoz and saves them into
traces.json. The function of get_graph loads resource defini-
tion from Kubernetes API server and traces from traces.json.
It creates a dependency graph of Kubernetes resources and
saves it into dependencies.json. The function of get_event
gets events from a Kubernetes API server and creates a list
of resource events and saves it into events.json. The function
of get_score loads dependency graph from dependencies.json
and resource events from events.json. It calculates scores
for end to end routes of dependency graph and determines
root cause candidates with scores. Listing 5 shows an ex-
ample of score list. The score list is a part of the output
of EventRCA. The score list contains pairs of scores and
resource names as root cause candidates. The resource names
are formatted as ‘“namespace/resource type/resource name”.

Listing 5: An example of score list

0.0495 stats/ConfigMap/istio-ca-root-cert
0.0495 /StorageProvisioner/rook—ceph.rbd.
csi.ceph.com
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Fig. 8: Baseline comparison by Hits@k

Line 1 represents that the score of ‘“stats/ConfigMap/istio-
ca-root-cert” is 0.0495. Line 2 represents that the score of
“StorageProvisioner/rook-ceph.rbd.csi.ceph.com” is 0.0495.

Experimental results

Fig. 6 shows baseline comparison by execution time. X-axis
represents method. MicroRCA is a baseline method and it is
a conventional RCA method based on metrics [9]. EventRCA
is the proposed method. Y-axis represents execution time in
seconds. Each bar represents the average execution time of
10 executions. The execution time of EventRCA was 4.56
seconds while that of MicroRCA was 6.74 seconds. The
average execution time of EventRCA is approximately 2.18
seconds shorter than that of MicroRCA.

Fig. 7 shows baseline comparison by MRR. X-axis repre-
sents experimental scenarios. Y-axis represents MRR. Legend
represents methods. MicroRCA is a baseline method [9].
EventRCA is the proposed method. MRR of MicroRCA was
0.00 and MRR of EventRCA was 0.26 for Scenario 1 (sl).
MRR of EventRCA is 0.26 greater than that of MicroRCA
in s1. MRR of MicroRCA was 0.00 and that of EventRCA
was 0.30 for Scenario 2 (s2). MRR of EventRCA is 0.30
greater than that of MicroRCA in s2. The results suggest that
EventRCA achieves higher accuracy than MicroRCA in Rook
Ceph failure scenarios. The average MRR of EventRCA is
approximately (0.304-0.26)/2 = 0.28 greater than the baseline
method.

Fig. 8 shows baseline comparison by Hits@k. X-axis rep-
resents k which is the number of top results. Y-axis represents
Hits@k. Legend represents pairs of methods and scenarios.
For example, MicroRCA-s1 represents MicroRCA in Scenario
1. MicroRCA is a baseline method [9]. EventRCA is the
proposed method. The result shows that the top-5 candidates



of EventRCA include the correct root cause candidates in
Scenario 1 and Scenario 2. MicroRCA fails to identify the
correct root cause within the top-5 candidates in Scenario
1 and Scenario 2. The average Hits@5 of EventRCA is
approximately (1.004-0.75)/2 = 0.88 greater than the baseline
method.

V. DISCUSSION

The proposed method uses Kubernetes resource events for
root cause analysis. These events contain resource lifecycle
information such as creation, update, and deletion, represent-
ing the state of resources at specific points in time without
their internal states. Log messages provide detailed internal
state information, enabling code-level root cause investigation
while applications generate large volumes of logs (e.g., tens of
millions per second in Tencent [21]), requiring production en-
vironments to apply log sampling [22]. Standard sampling may
discard logs necessary for investigation. Violation likelihood
sampling addresses this by assigning sampling probabilities
based on the likelihood of violations [23].

VI. CONCLUSION

This paper proposed EventRCA which is a method of
root cause analysis for middleware issues by resource events,
dependency graphs, and traces. EventRCA created dependency
graphs of Kubernetes resources and found resource events for
each resource based on the dependency graphs. Microservices
were deployed on the Kubernetes cluster for evaluation exper-
iments. The experimental results show that the average MRR
of the proposed method is approximately 0.28 greater than the
baseline method. The average Hits@5 of the proposed method
is approximately 0.88 greater than the baseline method.
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